DOI QR코드

DOI QR Code

NASH is an Inflammatory Disorder: Pathogenic, Prognostic and Therapeutic Implications

  • Farrell, Geoffrey C. (Gastroenterology and Hepatology Unit., The Canberra Hospital, Australian National University Medical School) ;
  • Rooyen, Derrick Van (Gastroenterology and Hepatology Unit., The Canberra Hospital, Australian National University Medical School) ;
  • Gan, Lay (Gastroenterology and Hepatology Unit., The Canberra Hospital, Australian National University Medical School) ;
  • Chitturi, Shivrakumar (Gastroenterology and Hepatology Unit., The Canberra Hospital, Australian National University Medical School)
  • Published : 2012.04.15

Abstract

While non-alcoholic fatty liver disease (NAFLD) is highly prevalent (15% to 45%) in modern societies, only 10% to 25% of cases develop hepatic fibrosis leading to cirrhosis, end-stage liver disease or hepatocellular carcinoma. Apart from pre-existing fibrosis, the strongest predictor of fibrotic progression in NAFLD is steatohepatitis or non-alcoholic steatohepatitis (NASH). The critical features other than steatosis are hepatocellular degeneration (ballooning, Mallory hyaline) and mixed inflammatory cell infiltration. While much is understood about the relationship of steatosis to metabolic factors (over-nutrition, insulin resistance, hyperglycemia, metabolic syndrome, hypoadiponectinemia), less is known about inflammatory recruitment, despite its importance for the perpetuation of liver injury and fibrogenesis. In this review, we present evidence that liver inflammation has prognostic significance in NAFLD. We then consider the origins and components of liver inflammation in NASH. Hepatocytes injured by toxic lipid molecules (lipotoxicity) play a central role in the recruitment of innate immunity involving Toll-like receptors (TLRs), Kupffer cells (KCs), lymphocytes and neutrophils and possibly inflammasome. The key pro-inflammatory signaling pathways in NASH are nuclear factor-kappa B (NF-${\kappa}B$) and c-Jun N-terminal kinase (JNK). The downstream effectors include adhesion molecules, chemokines, cytokines and the activation of cell death pathways leading to apoptosis. The upstream activators of NF-${\kappa}B$ and JNK are more contentious and may depend on the experimental model used. TLRs are strong contenders. It remains possible that inflammation in NASH originates outside the liver and in the gut microbiota that prime KC/TLR responses, inflamed adipose tissue and circulating inflammatory cells. We briefly review these mechanistic considerations and project their implications for the effective treatment of NASH.

Keywords

References

  1. Amarapurkar DN, Hashimoto E, Lesmana LA, et al. How common is non-alcoholic fatty liver disease in the Asia-Pacific region and are there local differences? J Gastroenterol Hepatol 2007;22:788-793. https://doi.org/10.1111/j.1440-1746.2007.05042.x
  2. Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 2006;43(2 Suppl 1):S99-S112.
  3. Larter CZ, Chitturi S, Heydet D, Farrell GC. A fresh look at NASH pathogenesis. Part 1: the metabolic movers. J Gastroenterol Hepatol 2010;25:672-690. https://doi.org/10.1111/j.1440-1746.2010.06253.x
  4. Chitturi S, Wong VW, Farrell G. Nonalcoholic fatty liver in Asia: firmly entrenched and rapidly gaining ground. J Gastroenterol Hepatol 2011;26 Suppl 1:163-172.
  5. Wong VW, Chu WC, Wong GL, et al. Prevalence of nonalcoholic fatty liver disease and advanced fibrosis in Hong Kong Chinese: a population study using proton-magnetic resonance spectroscopy and transient elastography. Gut 2012;61:409-415. https://doi.org/10.1136/gutjnl-2011-300342
  6. Williams CD, Stengel J, Asike MI, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 2011;140:124-131. https://doi.org/10.1053/j.gastro.2010.09.038
  7. Chitturi S, Farrell GC, Hashimoto E, et al. Non-alcoholic fatty liver disease in the Asia-Pacific region: definitions and overview of proposed guidelines. J Gastroenterol Hepatol 2007;22:778-787. https://doi.org/10.1111/j.1440-1746.2007.05001.x
  8. Fan JG, Saibara T, Chitturi S, et al. What are the risk factors and settings for non-alcoholic fatty liver disease in Asia-Pacific? J Gastroenterol Hepatol 2007;22:794-800. https://doi.org/10.1111/j.1440-1746.2007.04952.x
  9. Neuschwander-Tetri BA, Clark JM, Bass NM, et al. Clinical, laboratory and histological associations in adults with nonalcoholic fatty liver disease. Hepatology 2010;52:913-924.
  10. Musso G, Gambino R, Cassader M. Non-alcoholic fatty liver disease from pathogenesis to management: an update. Obes Rev 2010;11:430-445.
  11. Neuschwander-Tetri BA. Nonalcoholic steatohepatitis and the metabolic syndrome. Am J Med Sci 2005;330:326-335. https://doi.org/10.1097/00000441-200512000-00011
  12. Ekstedt M, Franzen LE, Mathiesen UL, et al. Long-term followup of patients with NAFLD and elevated liver enzymes. Hepatology 2006;44:865-873. https://doi.org/10.1002/hep.21327
  13. Yun KE, Shin CY, Yoon YS, Park HS. Elevated alanine aminotransferase levels predict mortality from cardiovascular disease and diabetes in Koreans. Atherosclerosis 2009;205:533-537. https://doi.org/10.1016/j.atherosclerosis.2008.12.012
  14. Fan JG, Farrell GC. Does non-alcoholic fatty liver disease predispose patients to type 2 diabetes in the absence of obesity? J Gastroenterol Hepatol 2010;25:223-225. https://doi.org/10.1111/j.1440-1746.2009.06164.x
  15. Chitturi S, Farrell GC. Clues from the carotids: an appraisal of cardiovascular disease risk in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2009;24:1315-1317. https://doi.org/10.1111/j.1440-1746.2009.05977.x
  16. Targher G, Day CP. Liver enzymes, nonalcoholic fatty liver disease, and incident cardiovascular disease. Hepatology 2011;53:375.
  17. Okanoue T, Umemura A, Yasui K, Itoh Y. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis in Japan. J Gastroenterol Hepatol 2011;26 Suppl 1:153-162.
  18. Speliotes EK, Yerges-Armstrong LM, Wu J, et al. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet 2011;7:e1001324. https://doi.org/10.1371/journal.pgen.1001324
  19. Schwimmer JB, Celedon MA, Lavine JE, et al. Heritability of nonalcoholic fatty liver disease. Gastroenterology 2009;136:1585-1592. https://doi.org/10.1053/j.gastro.2009.01.050
  20. Newton JL, Jones DE, Henderson E, et al. Fatigue in nonalcoholic fatty liver disease (NAFLD) is significant and associates with inactivity and excessive daytime sleepiness but not with liver disease severity or insulin resistance. Gut 2008;57:807-813. https://doi.org/10.1136/gut.2007.139303
  21. Thoma C, Day CP, Trenell MI. Lifestyle interventions for the treatment of non-alcoholic fatty liver disease in adults: a systematic review. J Hepatol 2012;56:255-266. https://doi.org/10.1016/j.jhep.2011.06.010
  22. Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 2008;40:1461-1465. https://doi.org/10.1038/ng.257
  23. Kotronen A, Johansson LE, Johansson LM, et al. A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans. Diabetologia 2009;52:1056-1060. https://doi.org/10.1007/s00125-009-1285-z
  24. Kantartzis K, Peter A, Machicao F, et al. Dissociation between fatty liver and insulin resistance in humans carrying a variant of the patatin-like phospholipase 3 gene. Diabetes 2009;58:2616-2623. https://doi.org/10.2337/db09-0279
  25. Speliotes EK, Butler JL, Palmer CD, et al. PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology 2010;52:904-912. https://doi.org/10.1002/hep.23768
  26. Yuan X, Waterworth D, Perry JR, et al. Population-based genome- wide association studies reveal six loci influencing plasma levels of liver enzymes. Am J Hum Genet 2008;83:520-528. https://doi.org/10.1016/j.ajhg.2008.09.012
  27. Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3) on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011;53:1883-1894. https://doi.org/10.1002/hep.24283
  28. Tian C, Stokowski RP, Kershenobich D, Ballinger DG, Hinds DA. Variant in PNPLA3 is associated with alcoholic liver disease. Nat Genet 2010;42:21-23. https://doi.org/10.1038/ng.488
  29. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA, Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 1999;94:2467-2474. https://doi.org/10.1111/j.1572-0241.1999.01377.x
  30. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005;41:1313-1321. https://doi.org/10.1002/hep.20701
  31. Yeh MM, Brunt EM. Pathology of nonalcoholic fatty liver disease. Am J Clin Pathol 2007;128:837-847. https://doi.org/10.1309/RTPM1PY6YGBL2G2R
  32. Bugianesi E, Leone N, Vanni E, et al. Expanding the natural history of nonalcoholic steatohepatitis: from cryptogenic cirrhosis to hepatocellular carcinoma. Gastroenterology 2002;123:134-140. https://doi.org/10.1053/gast.2002.34168
  33. Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, Mc-Cullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 1999;116:1413-1419. https://doi.org/10.1016/S0016-5085(99)70506-8
  34. Dam-Larsen S, Franzmann M, Andersen IB, et al. Long term prognosis of fatty liver: risk of chronic liver disease and death. Gut 2004;53:750-755. https://doi.org/10.1136/gut.2003.019984
  35. Hui JM, Kench JG, Chitturi S, et al. Long-term outcomes of cirrhosis in nonalcoholic steatohepatitis compared with hepatitis C. Hepatology 2003;38:420-427.
  36. Adams LA, Lymp JF, St Sauver J, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2005;129:113-121. https://doi.org/10.1053/j.gastro.2005.04.014
  37. Bhala N, Angulo P, van der Poorten D, et al. The natural history of nonalcoholic fatty liver disease with advanced fibrosis or cirrhosis: an international collaborative study. Hepatology 2011;54:1208-1216. https://doi.org/10.1002/hep.24491
  38. Teli MR, James OF, Burt AD, Bennett MK, Day CP. The natural history of nonalcoholic fatty liver: a follow-up study. Hepatology 1995;22:1714-1719. https://doi.org/10.1002/hep.1840220616
  39. Guha IN, Parkes J, Roderick P, et al. Noninvasive markers of fibrosis in nonalcoholic fatty liver disease: validating the European Liver Fibrosis Panel and exploring simple markers. Hepatology 2008;47:455-460.
  40. Wong VW, Chan HL. Transient elastography. J Gastroenterol Hepatol 2010;25:1726-1731. https://doi.org/10.1111/j.1440-1746.2010.06437.x
  41. Wong VW, Vergniol J, Wong GL, et al. Diagnosis of fibrosis and cirrhosis using liver stiffness measurement in nonalcoholic fatty liver disease. Hepatology 2010;51:454-462. https://doi.org/10.1002/hep.23312
  42. Adams LA. Biomarkers of liver fibrosis. J Gastroenterol Hepatol 2011;26:802-809. https://doi.org/10.1111/j.1440-1746.2010.06612.x
  43. Adams LA, George J, Bugianesi E, et al. Complex non-invasive fibrosis models are more accurate than simple models in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2011;26:1536-1543. https://doi.org/10.1111/j.1440-1746.2011.06774.x
  44. Musso G, Gambino R, Cassader M, Pagano G. Meta-analysis: natural history of non-alcoholic fatty liver disease (NAFLD) and diagnostic accuracy of non-invasive tests for liver disease severity. Ann Med 2011;43:617-649. https://doi.org/10.3109/07853890.2010.518623
  45. Brunt EM, Kleiner DE, Wilson LA, Belt P, Neuschwander-Tetri BA; NASH Clinical Research Network (CRN). Nonalcoholic fatty liver disease (NAFLD) activity score and the histopathologic diagnosis in NAFLD: distinct clinicopathologic meanings. Hepatology 2011;53:810-820. https://doi.org/10.1002/hep.24127
  46. Hashimoto E, Tokushige K, Farrell GC. Histological features of non-alcoholic fatty liver disease: what is important? J Gastroenterol Hepatol 2012;27:5-7.
  47. Younossi ZM, Stepanova M, Rafiq N, et al. Pathologic criteria for nonalcoholic steatohepatitis: interprotocol agreement and ability to predict liver-related mortality. Hepatology 2011;53:1874-1882. https://doi.org/10.1002/hep.24268
  48. Chalasani N, Wilson L, Kleiner DE, et al. Relationship of steatosis grade and zonal location to histological features of steatohepatitis in adult patients with non-alcoholic fatty liver disease. J Hepatol 2008;48:829-834. https://doi.org/10.1016/j.jhep.2008.01.016
  49. Angulo P. Diagnosing steatohepatitis and predicting liver-related mortality in patients with NAFLD: two distinct concepts. Hepatology 2011;53:1792-1794. https://doi.org/10.1002/hep.24403
  50. Brunt EM, Kleiner DE, Wilson LA, et al. Portal chronic inflammation in nonalcoholic fatty liver disease (NAFLD): a histologic marker of advanced NAFLD-Clinicopathologic correlations from the nonalcoholic steatohepatitis clinical research network. Hepatology 2009;49:809-820. https://doi.org/10.1002/hep.22724
  51. Argo CK, Northup PG, Al-Osaimi AM, Caldwell SH. Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J Hepatol 2009;51:371-379. https://doi.org/10.1016/j.jhep.2009.03.019
  52. Chitturi S, Abeygunasekera S, Farrell GC, et al. NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology 2002;35:373-379. https://doi.org/10.1053/jhep.2002.30692
  53. Marchesini G, Bugianesi E, Forlani G, et al. Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 2003;37:917-923. https://doi.org/10.1053/jhep.2003.50161
  54. Alkhouri N, Tamimi TA, Yerian L, Lopez R, Zein NN, Feldstein AE. The inflamed liver and atherosclerosis: a link between histologic severity of nonalcoholic fatty liver disease and increased cardiovascular risk. Dig Dis Sci 2010;55:2644-2650. https://doi.org/10.1007/s10620-009-1075-y
  55. Park SH, Kim BI, Kim SH, et al. Body fat distribution and insulin resistance: beyond obesity in nonalcoholic fatty liver disease among overweight men. J Am Coll Nutr 2007;26:321-326. https://doi.org/10.1080/07315724.2007.10719618
  56. Park BJ, Kim YJ, Kim DH, et al. Visceral adipose tissue area is an independent risk factor for hepatic steatosis. J Gastroenterol Hepatol 2008;23:900-907. https://doi.org/10.1111/j.1440-1746.2007.05212.x
  57. Harris RB, Leibel RL. Location, location, location. Cell Metab 2008;7:359-361. https://doi.org/10.1016/j.cmet.2008.04.007
  58. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 2004;145:2273-2282. https://doi.org/10.1210/en.2003-1336
  59. Perrini S, Laviola L, Cignarelli A, et al. Fat depot-related differences in gene expression, adiponectin secretion, and insulin action and signalling in human adipocytes differentiated in vitro from precursor stromal cells. Diabetologia 2008;51:155-164.
  60. Stanton MC, Chen SC, Jackson JV, et al. Inflammatory Signals shift from adipose to liver during high fat feeding and influence the development of steatohepatitis in mice. J Inflamm (Lond) 2011;8:8. https://doi.org/10.1186/1476-9255-8-8
  61. Lanthier N, Molendi-Coste O, Cani PD, van Rooijen N, Horsmans Y, Leclercq IA. Kupffer cell depletion prevents but has no therapeutic effect on metabolic and inflammatory changes induced by a high-fat diet. FASEB J 2011;25:4301-4311. https://doi.org/10.1096/fj.11-189472
  62. Takahashi K, Mizuarai S, Araki H, et al. Adiposity elevates plasma MCP-1 levels leading to the increased CD11b-positive monocytes in mice. J Biol Chem 2003;278:46654-46660. https://doi.org/10.1074/jbc.M309895200
  63. Kanda H, Tateya S, Tamori Y, et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006;116:1494-1505. https://doi.org/10.1172/JCI26498
  64. Schenk S, Saberi M, Olefsky JM. Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 2008;118:2992-3002. https://doi.org/10.1172/JCI34260
  65. Saberi M, Woods NB, de Luca C, et al. Hematopoietic cellspecific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice. Cell Metab 2009;10:419-429. https://doi.org/10.1016/j.cmet.2009.09.006
  66. Weisberg SP, Hunter D, Huber R, et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006;116:115-124. https://doi.org/10.1172/JCI24335
  67. Haukeland JW, Damås JK, Konopski Z, et al. Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J Hepatol 2006;44:1167-1174. https://doi.org/10.1016/j.jhep.2006.02.011
  68. Arkan MC, Hevener AL, Greten FR, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005;11:191-198. https://doi.org/10.1038/nm1185
  69. Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NFkappaB. Nat Med 2005;11:183-190. https://doi.org/10.1038/nm1166
  70. Maher JJ, Leon P, Ryan JC. Beyond insulin resistance: innate immunity in nonalcoholic steatohepatitis. Hepatology 2008;48:670-678. https://doi.org/10.1002/hep.22399
  71. Clément S, Juge-Aubry C, Sgroi A, et al. Monocyte chemoattractant protein-1 secreted by adipose tissue induces direct lipid accumulation in hepatocytes. Hepatology 2008;48:799-807. https://doi.org/10.1002/hep.22404
  72. Larter CZ, Farrell GC. Insulin resistance, adiponectin, cytokines in NASH: which is the best target to treat? J Hepatol 2006;44:253-261. https://doi.org/10.1016/j.jhep.2005.11.030
  73. Masaki T, Chiba S, Tatsukawa H, et al. Adiponectin protects LPSinduced liver injury through modulation of TNF-alpha in KK-Ay obese mice. Hepatology 2004;40:177-184.
  74. Hui JM, Hodge A, Farrell GC, Kench JG, Kriketos A, George J. Beyond insulin resistance in NASH: TNF-alpha or adiponectin? Hepatology 2004;40:46-54.
  75. Marra F, Bertolani C. Adipokines in liver diseases. Hepatology 2009;50:957-969. https://doi.org/10.1002/hep.23046
  76. Krysiak R, Zmuda W, Okopien B. The effect of ezetimibe, administered alone or in combination with simvastatin, on lymphocyte cytokine release in patients with elevated cholesterol levels. J Intern Med 2012;271:32-42. https://doi.org/10.1111/j.1365-2796.2011.02394.x
  77. Cani PD, Possemiers S, Van de Wiele T, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 2009;58:1091-1103. https://doi.org/10.1136/gut.2008.165886
  78. Wigg AJ, Roberts-Thomson IC, Dymock RB, McCarthy PJ, Grose RH, Cummins AG. The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non-alcoholic steatohepatitis. Gut 2001;48:206-211. https://doi.org/10.1136/gut.48.2.206
  79. Miele L, Valenza V, La Torre G, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 2009;49:1877-1887. https://doi.org/10.1002/hep.22848
  80. Brun P, Castagliuolo I, Di Leo V, et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol 2007;292:G518-G525.
  81. Li Z, Soloski MJ, Diehl AM. Dietary factors alter hepatic innate immune system in mice with nonalcoholic fatty liver disease. Hepatology 2005;42:880-885.
  82. Szabo G, Mandrekar P, Dolganiuc A. Innate immune response and hepatic inflammation. Semin Liver Dis 2007;27:339-350. https://doi.org/10.1055/s-2007-991511
  83. Mandrekar P, Szabo G. Signalling pathways in alcohol-induced liver inflammation. J Hepatol 2009;50:1258-1266. https://doi.org/10.1016/j.jhep.2009.03.007
  84. Cusi K. Role of obesity and lipotoxicity in the development of nonalcoholic steatohepatitis (Nash): pathophysiology and clinical implications. Gastroenterology. Epub 2012 Feb 8. DOI: http:// dx.doi.org/10.1053/j.gastro.2012.02.003.
  85. Schwabe RF, Seki E, Brenner DA. Toll-like receptor signaling in the liver. Gastroenterology 2006;130:1886-1900. https://doi.org/10.1053/j.gastro.2006.01.038
  86. Tacke F, Luedde T, Trautwein C. Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allergy Immunol 2009;36:4-12. https://doi.org/10.1007/s12016-008-8091-0
  87. Jaeschke H. Reactive oxygen and mechanisms of inflammatory liver injury: present concepts. J Gastroenterol Hepatol 2011;26 Suppl 1:173-179.
  88. Puri P, Baillie RA, Wiest MM, et al. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology 2007;46:1081-1090. https://doi.org/10.1002/hep.21763
  89. Neuschwander-Tetri BA. Nontriglyceride hepatic lipotoxicity: the new paradigm for the pathogenesis of NASH. Curr Gastroenterol Rep 2010;12:49-56. https://doi.org/10.1007/s11894-009-0083-6
  90. Neuschwander-Tetri BA. Hepatic lipotoxicity and the pathogenesis of nonalcoholic steatohepatitis: the central role of nontriglyceride fatty acid metabolites. Hepatology 2010;52:774-788. https://doi.org/10.1002/hep.23719
  91. Bass NM. Lipidomic dissection of nonalcoholic steatohepatitis: moving beyond foie gras to fat traffic. Hepatology 2010;51:4-7. https://doi.org/10.1002/hep.23458
  92. Alkhouri N, Dixon LJ, Feldstein AE. Lipotoxicity in nonalcoholic fatty liver disease: not all lipids are created equal. Expert Rev Gastroenterol Hepatol 2009;3:445-451. https://doi.org/10.1586/egh.09.32
  93. Ginsberg HN. Is the slippery slope from steatosis to steatohepatitis paved with triglyceride or cholesterol? Cell Metab 2006;4:179-181. https://doi.org/10.1016/j.cmet.2006.08.010
  94. Caballero F, Fernandez A, De Lacy AM, Fernandez-Checa JC, Caballeria J, Garcia-Ruiz C. Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J Hepatol 2009;50:789-796. https://doi.org/10.1016/j.jhep.2008.12.016
  95. Han MS, Park SY, Shinzawa K, et al. Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes. J Lipid Res 2008;49:84-97. https://doi.org/10.1194/jlr.M700184-JLR200
  96. Puri P, Wiest MM, Cheung O, et al. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology 2009;50:1827-1838. https://doi.org/10.1002/hep.23229
  97. Lee GS, Yan JS, Ng RK, Kakar S, Maher JJ. Polyunsaturated fat in the methionine-choline-deficient diet influences hepatic inflammation but not hepatocellular injury. J Lipid Res 2007;48:1885-1896. https://doi.org/10.1194/jlr.M700181-JLR200
  98. Larter CZ, Yeh MM, Cheng J, et al. Activation of peroxisome proliferator-activated receptor alpha by dietary fish oil attenuates steatosis, but does not prevent experimental steatohepatitis because of hepatic lipoperoxide accumulation. J Gastroenterol Hepatol 2008;23:267-275. https://doi.org/10.1111/j.1440-1746.2007.05157.x
  99. Pickens MK, Yan JS, Ng RK, et al. Dietary sucrose is essential to the development of liver injury in the methionine-choline-deficient model of steatohepatitis. J Lipid Res 2009;50:2072-2082. https://doi.org/10.1194/jlr.M900022-JLR200
  100. Tetri LH, Basaranoglu M, Brunt EM, Yerian LM, Neuschwander- Tetri BA. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent. Am J Physiol Gastrointest Liver Physiol 2008;295:G987-G995. https://doi.org/10.1152/ajpgi.90272.2008
  101. Li Z, Berk M, McIntyre TM, Gores GJ, Feldstein AE. The lysosomal- mitochondrial axis in free fatty acid-induced hepatic lipotoxicity. Hepatology 2008;47:1495-1503. https://doi.org/10.1002/hep.22183
  102. Nolan CJ, Larter CZ. Lipotoxicity: why do saturated fatty acids cause and monounsaturates protect against it? J Gastroenterol Hepatol 2009;24:703-706. https://doi.org/10.1111/j.1440-1746.2009.05823.x
  103. Bass NM, Merriman RB. Fatty acid metabolism and lipotoxicity in the pathogenesis of NAFLD/NASH. In: Farrell GC, George J, Hall P de la M, McCullough AJ, eds. Fatty liver disease: NASH and related disorders. Malden: USA: Blackwell Publishing, 2005:109-22.
  104. Malhi H, Gores GJ. Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis 2008;28:360-369. https://doi.org/10.1055/s-0028-1091980
  105. Wei Y, Wang D, Topczewski F, Pagliassotti MJ. Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 2006;291:E275-E281. https://doi.org/10.1152/ajpendo.00644.2005
  106. Kakisaka K, Cazanave SC, Fingas CD. Lysophosphatidylcholine is a likely mediator of free fatty acid-induced hepatocyte lipoapoptosis. Hepatology 2011;54 Suppl 1:399A.
  107. Nakamura S, Takamura T, Matsuzawa-Nagata N, et al. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem 2009;284:14809-14818. https://doi.org/10.1074/jbc.M901488200
  108. Larter CZ, Yeh MM. Animal models of NASH: getting both pathology and metabolic context right. J Gastroenterol Hepatol 2008;23:1635-1648. https://doi.org/10.1111/j.1440-1746.2008.05543.x
  109. Maher JJ. New insights from rodent models of fatty liver disease. Antioxid Redox Signal 2011;15:535-550. https://doi.org/10.1089/ars.2010.3749
  110. Marí M, Caballero F, Colell A, et al. Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 2006;4:185-198. https://doi.org/10.1016/j.cmet.2006.07.006
  111. Mari M, Colell A, Morales A, et al. Mechanism of mitochondrial glutathione-dependent hepatocellular susceptibility to TNF despite NF-kappaB activation. Gastroenterology 2008;134:1507-1520. https://doi.org/10.1053/j.gastro.2008.01.073
  112. Yao PM, Tabas I. Free cholesterol loading of macrophages induces apoptosis involving the fas pathway. J Biol Chem 2000;275:23807-23813. https://doi.org/10.1074/jbc.M002087200
  113. Li Y, Ge M, Ciani L, et al. Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids: implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterol-loaded macrophages. J Biol Chem 2004;279:37030-37039. https://doi.org/10.1074/jbc.M405195200
  114. Larter CZ, Yeh MM, Van Rooyen DM, et al. Roles of adipose restriction and metabolic factors in progression of steatosis to steatohepatitis in obese, diabetic mice. J Gastroenterol Hepatol 2009;24:1658-1668. https://doi.org/10.1111/j.1440-1746.2009.05996.x
  115. Van Rooyen DM, Larter CZ, Haigh WG, et al. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology 2011;141:1393-1403, 1403.e1-5. https://doi.org/10.1053/j.gastro.2011.06.040
  116. Ota T, Takamura T, Kurita S, et al. Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology 2007;132:282-293. https://doi.org/10.1053/j.gastro.2006.10.014
  117. Xu ZJ, Fan JG, Ding XD, Qiao L, Wang GL. Characterization of high-fat, diet-induced, non-alcoholic steatohepatitis with fibrosis in rats. Dig Dis Sci 2010;55:931-940. https://doi.org/10.1007/s10620-009-0815-3
  118. Vijay-Kumar M, Aitken JD, Carvalho FA, Ziegler TR, Gewirtz AT, Ganji V. Loss of function mutation in toll-like receptor-4 does not offer protection against obesity and insulin resistance induced by a diet high in trans fat in mice. J Inflamm (Lond) 2011;8:2. https://doi.org/10.1186/1476-9255-8-2
  119. Lo L, McLennan SV, Williams PF, et al. Diabetes is a progression factor for hepatic fibrosis in a high fat fed mouse obesity model of non-alcoholic steatohepatitis. J Hepatol 2011;55:435-444. https://doi.org/10.1016/j.jhep.2010.10.039
  120. Varela-Rey M, Embade N, Ariz U, Lu SC, Mato JM, Martínez- Chantar ML. Non-alcoholic steatohepatitis and animal models: understanding the human disease. Int J Biochem Cell Biol 2009;41:969-976. https://doi.org/10.1016/j.biocel.2008.10.027
  121. Anstee QM, Goldin RD. Mouse models in non-alcoholic fatty liver disease and steatohepatitis research. Int J Exp Pathol 2006;87:1-16. https://doi.org/10.1111/j.0959-9673.2006.00465.x
  122. Chan J, Sharkey FE, Kushwaha RS, VandeBerg JF, VandeBerg JL. Steatohepatitis in ABCB4 deficient laboratory opossums exhibiting a high lipemic response to dietary cholesterol and fat. Am J Physiol Gastrointest Liver Physiol. Forthcoming 2012.
  123. van Rooyen DM, Larter CZ, Yeh MM, Haigh WG, Teoh N, Farrell GC. Ezetimibe and artorvastatin ameliorate liver injury in foz/foz mice with NASH. J Gastroenterol Hepatol 2011;26 Suppl 4:2.
  124. Tabas I. Free cholesterol-induced cytotoxicity a possible contributing factor to macrophage foam cell necrosis in advanced atherosclerotic lesions. Trends Cardiovasc Med 1997;7:256-263. https://doi.org/10.1016/S1050-1738(97)00086-8
  125. Wouters K, van Gorp PJ, Bieghs V, et al. Dietary cholesterol, rather than liver steatosis, leads to hepatic inflammation in hyperlipidemic mouse models of nonalcoholic steatohepatitis. Hepatology 2008;48:474-486. https://doi.org/10.1002/hep.22363
  126. Wouters K, van Bilsen M, van Gorp PJ, et al. Intrahepatic cholesterol influences progression, inhibition and reversal of nonalcoholic steatohepatitis in hyperlipidemic mice. FEBS Lett 2010;584:1001-1005. https://doi.org/10.1016/j.febslet.2010.01.046
  127. Day CP, James OF. Steatohepatitis: a tale of two "hits"? Gastroenterology 1998;114:842-845. https://doi.org/10.1016/S0016-5085(98)70599-2
  128. Yang SQ, Lin HZ, Lane MD, Clemens M, Diehl AM. Obesity increases sensitivity to endotoxin liver injury: implications for the pathogenesis of steatohepatitis. Proc Natl Acad Sci U S A 1997;94:2557-2562. https://doi.org/10.1073/pnas.94.6.2557
  129. Li Z, Yang S, Lin H, et al. Probiotics and antibodies to TNF inhibit inflammatory activity and improve nonalcoholic fatty liver disease. Hepatology 2003;37:343-350. https://doi.org/10.1053/jhep.2003.50048
  130. Chitturi S, Farrell GC. Etiopathogenesis of nonalcoholic steatohepatitis. Semin Liver Dis 2001;21:27-41. https://doi.org/10.1055/s-2001-12927
  131. Crespo J, Cayon A, Fernandez-Gil P, et al. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients. Hepatology 2001;34:1158-1163. https://doi.org/10.1053/jhep.2001.29628
  132. Carter-Kent C, Zein NN, Feldstein AE. Cytokines in the pathogenesis of fatty liver and disease progression to steatohepatitis: implications for treatment. Am J Gastroenterol 2008;103:1036-1042. https://doi.org/10.1111/j.1572-0241.2007.01709.x
  133. Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010;52:1836-1846. https://doi.org/10.1002/hep.24001
  134. Syn WK, Yang L, Chiang DJ, et al. Genetic differences in oxidative stress and inflammatory responses to diet-induced obesity do not alter liver fibrosis in mice. Liver Int 2009;29:1262-1272. https://doi.org/10.1111/j.1478-3231.2009.02036.x
  135. Deng QG, She H, Cheng JH, et al. Steatohepatitis induced by intragastric overfeeding in mice. Hepatology 2005;42:905-914. https://doi.org/10.1002/hep.20877
  136. Memon RA, Grunfeld C, Feingold KR. TNF-alpha is not the cause of fatty liver disease in obese diabetic mice. Nat Med 2001;7:2-3.
  137. Dela Pena A, Leclercq I, Field J, George J, Jones B, Farrell G. NFkappaB activation, rather than TNF, mediates hepatic inflammation in a murine dietary model of steatohepatitis. Gastroenterology 2005;129:1663-1674. https://doi.org/10.1053/j.gastro.2005.09.004
  138. Lu SC, Alvarez L, Huang ZZ, et al. Methionine adenosyltransferase 1A knockout mice are predisposed to liver injury and exhibit increased expression of genes involved in proliferation. Proc Natl Acad Sci U S A 2001;98:5560-5565. https://doi.org/10.1073/pnas.091016398
  139. Leclercq IA, Farrell GC, Field J, Bell DR, Gonzalez FJ, Robertson GR. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J Clin Invest 2000;105:1067-1075. https://doi.org/10.1172/JCI8814
  140. George J, Pera N, Phung N, Leclercq I, Yun Hou J, Farrell G. Lipid peroxidation, stellate cell activation and hepatic fibrogenesis in a rat model of chronic steatohepatitis. J Hepatol 2003;39:756-764. https://doi.org/10.1016/S0168-8278(03)00376-3
  141. Yu J, Ip E, Dela Pena A, et al. COX-2 induction in mice with experimental nutritional steatohepatitis: role as pro-inflammatory mediator. Hepatology 2006;43:826-836. https://doi.org/10.1002/hep.21108
  142. Ip E, Farrell G, Hall P, Robertson G, Leclercq I. Administration of the potent PPARalpha agonist, Wy-14,643, reverses nutritional fibrosis and steatohepatitis in mice. Hepatology 2004;39:1286-1296. https://doi.org/10.1002/hep.20170
  143. Seki S, Kitada T, Yamada T, Sakaguchi H, Nakatani K, Wakasa K. In situ detection of lipid peroxidation and oxidative DNA damage in non-alcoholic fatty liver diseases. J Hepatol 2002;37:56-62. https://doi.org/10.1016/S0168-8278(02)00073-9
  144. MacDonald GA, Bridle KR, Ward PJ, et al. Lipid peroxidation in hepatic steatosis in humans is associated with hepatic fibrosis and occurs predominately in acinar zone 3. J Gastroenterol Hepatol 2001;16:599-606. https://doi.org/10.1046/j.1440-1746.2001.02445.x
  145. Videla LA, Rodrigo R, Orellana M, et al. Oxidative stress-related parameters in the liver of non-alcoholic fatty liver disease patients. Clin Sci (Lond) 2004;106:261-268. https://doi.org/10.1042/CS20030285
  146. Weltman MD, Farrell GC, Hall P, Ingelman-Sundberg M, Liddle C. Hepatic cytochrome P450 2E1 is increased in patients with nonalcoholic steatohepatitis. Hepatology 1998;27:128-133. https://doi.org/10.1002/hep.510270121
  147. Chalasani N, Gorski JC, Asghar MS, et al. Hepatic cytochrome P450 2E1 activity in nondiabetic patients with nonalcoholic steatohepatitis. Hepatology 2003;37:544-550. https://doi.org/10.1053/jhep.2003.50095
  148. Gornicka A, Morris-Stiff G, Thapaliya S, Papouchado BG, Berk M, Feldstein AE. Transcriptional profile of genes involved in oxidative stress and antioxidant defense in a dietary murine model of steatohepatitis. Antioxid Redox Signal 2011;15:437-445. https://doi.org/10.1089/ars.2010.3815
  149. Koek GH, Liedorp PR, Bast A. The role of oxidative stress in nonalcoholic steatohepatitis. Clin Chim Acta 2011;412:1297-1305. https://doi.org/10.1016/j.cca.2011.04.013
  150. Phung N, Pera N, Farrell G, Leclercq I, Hou JY, George J. Prooxidant- mediated hepatic fibrosis and effects of antioxidant intervention in murine dietary steatohepatitis. Int J Mol Med 2009;24:171-180.
  151. Yu J, Chu ES, Wang R, et al. Heme oxygenase-1 protects against steatohepatitis in both cultured hepatocytes and mice. Gastroenterology 2010;138:694-704, 704.e1. https://doi.org/10.1053/j.gastro.2009.09.058
  152. Sanyal AJ, Chalasani N, Kowdley KV, et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N Engl J Med 2010;362:1675-1685. https://doi.org/10.1056/NEJMoa0907929
  153. Schroder M, Kaufman RJ. The mammalian unfolded protein response. Annu Rev Biochem 2005;74:739-789. https://doi.org/10.1146/annurev.biochem.73.011303.074134
  154. Dara L, Ji C, Kaplowitz N. The contribution of endoplasmic reticulum stress to liver diseases. Hepatology 2011;53:1752-1763. https://doi.org/10.1002/hep.24279
  155. Leclercq IA, Van Rooyen DM, Farrell GC. Hepatic endoplasmic reticulum stress in obesity: deeper insights into processes, but are they relevant to nonalcoholic steatohepatitis? Hepatology 2011;54:2260-2265.
  156. Kaplowitz N, Ji C. Unfolding new mechanisms of alcoholic liver disease in the endoplasmic reticulum. J Gastroenterol Hepatol 2006;21 Suppl 3:S7-S9.
  157. Ji C, Kaplowitz N, Lau MY, Kao E, Petrovic LM, Lee AS. Liverspecific loss of glucose-regulated protein 78 perturbs the unfolded protein response and exacerbates a spectrum of liver diseases in mice. Hepatology 2011;54:229-239. https://doi.org/10.1002/hep.24368
  158. Gregor MF, Yang L, Fabbrini E, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 2009;58:693-700.
  159. Puri P, Mirshahi F, Cheung O, et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology 2008;134:568-576. https://doi.org/10.1053/j.gastro.2007.10.039
  160. Rahman SM, Schroeder-Gloeckler JM, Janssen RC, et al. CCAAT/enhancing binding protein beta deletion in mice attenuates inflammation, endoplasmic reticulum stress, and lipid accumulation in diet-induced nonalcoholic steatohepatitis. Hepatology 2007;45:1108-1117. https://doi.org/10.1002/hep.21614
  161. Rinella ME, Siddiqui MS, Gardikiotes K, Gottstein J, Elias M, Green RM. Dysregulation of the unfolded protein response in db/db mice with diet-induced steatohepatitis. Hepatology 2011;54:1600-1609. https://doi.org/10.1002/hep.24553
  162. Soon RK Jr, Yan JS, Grenert JP, Maher JJ. Stress signaling in the methionine-choline-deficient model of murine fatty liver disease. Gastroenterology 2010;139:1730-1739, 1739.e1. https://doi.org/10.1053/j.gastro.2010.07.046
  163. Garbow JR, Doherty JM, Schugar RC, et al. Hepatic steatosis, inflammation, and ER stress in mice maintained long term on a very low-carbohydrate ketogenic diet. Am J Physiol Gastrointest Liver Physiol 2011;300:G956-G967. https://doi.org/10.1152/ajpgi.00539.2010
  164. Fu S, Yang L, Li P, et al. Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature 2011;473:528-531. https://doi.org/10.1038/nature09968
  165. Ozcan U, Yilmaz E, Ozcan L, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006;313:1137-1140. https://doi.org/10.1126/science.1128294
  166. Adams LA, Angulo P, Petz J, Keach J, Lindor KD. A pilot trial of high-dose ursodeoxycholic acid in nonalcoholic steatohepatitis. Hepatol Int 2010;4:628-633. https://doi.org/10.1007/s12072-010-9195-1
  167. Leuschner UF, Lindenthal B, Herrmann G, et al. High-dose ursodeoxycholic acid therapy for nonalcoholic steatohepatitis: a double-blind, randomized, placebo-controlled trial. Hepatology 2010;52:472-479.
  168. Sanyal AJ, Campbell-Sargent C, Mirshahi F, et al. Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology 2001;120:1183-1192. https://doi.org/10.1053/gast.2001.23256
  169. Caldwell SH, de Freitas LA, Park SH, et al. Intramitochondrial crystalline inclusions in nonalcoholic steatohepatitis. Hepatology 2009;49:1888-1895. https://doi.org/10.1002/hep.22851
  170. Cortez-Pinto H, Chatham J, Chacko VP, Arnold C, Rashid A, Diehl AM. Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study. JAMA 1999;282:1659-1664. https://doi.org/10.1001/jama.282.17.1659
  171. Pessayre D. Role of mitochondria in non-alcoholic fatty liver disease. J Gastroenterol Hepatol 2007;22 Suppl 1:S20-S27.
  172. Rashid A, Wu TC, Huang CC, et al. Mitochondrial proteins that regulate apoptosis and necrosis are induced in mouse fatty liver. Hepatology 1999;29:1131-1138. https://doi.org/10.1002/hep.510290428
  173. Arsov T, Larter CZ, Nolan CJ, et al. Adaptive failure to high-fat diet characterizes steatohepatitis in Alms1 mutant mice. Biochem Biophys Res Commun 2006;342:1152-1159. https://doi.org/10.1016/j.bbrc.2006.02.032
  174. Llacuna L, Fernandez A, Montfort CV, et al. Targeting cholesterol at different levels in the mevalonate pathway protects fatty liver against ischemia-reperfusion injury. J Hepatol 2011;54:1002-1010. https://doi.org/10.1016/j.jhep.2010.08.031
  175. Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL. Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 2009;1787:1395-1401. https://doi.org/10.1016/j.bbabio.2009.06.009
  176. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008;132:27-42. https://doi.org/10.1016/j.cell.2007.12.018
  177. Green DR, Galluzzi L, Kroemer G. Mitochondria and the autophagy- inflammation-cell death axis in organismal aging. Science 2011;333:1109-1112. https://doi.org/10.1126/science.1201940
  178. Nakahira K, Haspel JA, Rathinam VA, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011;12:222-230.
  179. Czaja MJ. Functions of autophagy in hepatic and pancreatic physiology and disease. Gastroenterology 2011;140:1895-1908. https://doi.org/10.1053/j.gastro.2011.04.038
  180. Kono H, Rock KL. How dying cells alert the immune system to danger. Nat Rev Immunol 2008;8:279-289. https://doi.org/10.1038/nri2215
  181. Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 2010;11:467-478. https://doi.org/10.1016/j.cmet.2010.04.005
  182. Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 2011;29:707-735. https://doi.org/10.1146/annurev-immunol-031210-101405
  183. Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 2011;12:408-415. https://doi.org/10.1038/ni.2022
  184. Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A, Szabo G. Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology 2011;54:133-144. https://doi.org/10.1002/hep.24341
  185. Kirovski G, Gabele E, Dorn C, et al. Hepatic steatosis causes induction of the chemokine RANTES in the absence of significant hepatic inflammation. Int J Clin Exp Pathol 2010;3:675-680.
  186. Richardson MM, Jonsson JR, Powell EE, et al. Progressive fibrosis in nonalcoholic steatohepatitis: association with altered regeneration and a ductular reaction. Gastroenterology 2007;133:80-90. https://doi.org/10.1053/j.gastro.2007.05.012
  187. Grzelak CA, Martellotto LG, Warner FJ, et al. The hedgehog pathway in hepatocellular liver injury progression. J Gastroenterol Hepatol 2011;26 Suppl 4:13-14.
  188. Rangwala F, Guy CD, Lu J, et al. Increased production of sonic hedgehog by ballooned hepatocytes. J Pathol 2011;224:401-410. https://doi.org/10.1002/path.2888
  189. Philips GM, Chan IS, Swiderska M, et al. Hedgehog signaling antagonist promotes regression of both liver fibrosis and hepatocellular carcinoma in a murine model of primary liver cancer. PLoS One 2011;6:e23943. https://doi.org/10.1371/journal.pone.0023943
  190. Caldwell S, Ikura Y, Dias D, et al. Hepatocellular ballooning in NASH. J Hepatol 2010;53:719-723. https://doi.org/10.1016/j.jhep.2010.04.031
  191. Lackner C, Gogg-Kamerer M, Zatloukal K, Stumptner C, Brunt EM, Denk H. Ballooned hepatocytes in steatohepatitis: the value of keratin immunohistochemistry for diagnosis. J Hepatol 2008;48:821-828. https://doi.org/10.1016/j.jhep.2008.01.026
  192. Caldwell SH, Redick JA, Chang CY, Davis CA, Argo CK, Al Osaimi KA. Enlarged hepatocytes in NAFLD examined with osmium fixation: does microsteatosis underlie cellular ballooning in NASH? Am J Gastroenterol 2006;101:1677-1678. https://doi.org/10.1111/j.1572-0241.2006.00627_8.x
  193. Machado MV, Cortez-Pinto H. Cell death and nonalcoholic steatohepatitis: where is ballooning relevant? Expert Rev Gastroenterol Hepatol 2011;5:213-222. https://doi.org/10.1586/egh.11.16
  194. Wieckowska A, Zein NN, Yerian LM, Lopez AR, McCullough AJ, Feldstein AE. In vivo assessment of liver cell apoptosis as a novel biomarker of disease severity in nonalcoholic fatty liver disease. Hepatology 2006;44:27-33.
  195. Joka D, Wahl K, Moeller S, et al. Prospective biopsy-controlled evaluation of cell death biomarkers for prediction of liver fibrosis and nonalcoholic steatohepatitis. Hepatology 2012;55:455-464. https://doi.org/10.1002/hep.24734
  196. Salminen A, Kaarniranta K. Control of p53 and NF-kappaB signaling by WIP1 and MIF: role in cellular senescence and organismal aging. Cell Signal 2011;23:747-752. https://doi.org/10.1016/j.cellsig.2010.10.012
  197. Ren JL, Pan JS, Lu YP, Sun P, Han J. Inflammatory signaling and cellular senescence. Cell Signal 2009;21:378-383. https://doi.org/10.1016/j.cellsig.2008.10.011
  198. Hartmann D, Srivastava U, Thaler M, et al. Telomerase gene mutations are associated with cirrhosis formation. Hepatology 2011;53:1608-1617. https://doi.org/10.1002/hep.24217
  199. Xue W, Zender L, Miething C, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007;445:656-660. https://doi.org/10.1038/nature05529
  200. Farrell GC, Larter CZ, Hou JY, et al. Apoptosis in experimental NASH is associated with p53 activation and TRAIL receptor expression. J Gastroenterol Hepatol 2009;24:443-452. https://doi.org/10.1111/j.1440-1746.2009.05785.x
  201. Dela Pena A, Leclercq IA, Williams J, Farrell GC. NADPH oxidase is not an essential mediator of oxidative stress or liver injury in murine MCD diet-induced steatohepatitis. J Hepatol 2007;46:304-313. https://doi.org/10.1016/j.jhep.2006.08.025
  202. Videla LA, Tapia G, Rodrigo R, et al. Liver NF-kappaB and AP-1 DNA binding in obese patients. Obesity (Silver Spring) 2009;17:973-979. https://doi.org/10.1038/oby.2008.601
  203. Leclercq IA, Farrell GC, Sempoux C, dela Peña A, Horsmans Y. Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice. J Hepatol 2004;41:926-934. https://doi.org/10.1016/j.jhep.2004.08.010
  204. Koca SS, Bahcecioglu IH, Poyrazoglu OK, Ozercan IH, Sahin K, Ustundag B. The treatment with antibody of TNF-alpha reduces the inflammation, necrosis and fibrosis in the non-alcoholic steatohepatitis induced by methionine- and choline-deficient diet. Inflammation 2008;31:91-98. https://doi.org/10.1007/s10753-007-9053-z
  205. Tomita K, Tamiya G, Ando S, et al. Tumour necrosis factor alpha signalling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut 2006;55:415-424. https://doi.org/10.1136/gut.2005.071118
  206. Li L, Chen L, Hu L, et al. Nuclear factor high-mobility group box1 mediating the activation of Toll-like receptor 4 signaling in hepatocytes in the early stage of nonalcoholic fatty liver disease in mice. Hepatology 2011;54:1620-1630. https://doi.org/10.1002/hep.24552
  207. Miura K, Kodama Y, Inokuchi S, et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology 2010;139:323-334.e7. https://doi.org/10.1053/j.gastro.2010.03.052
  208. Brenner DA, Seki E, Taura K, et al. Non-alcoholic steatohepatitisinduced fibrosis: Toll-like receptors, reactive oxygen species and Jun N-terminal kinase. Hepatol Res 2011;41:683-686. https://doi.org/10.1111/j.1872-034X.2011.00814.x
  209. Schattenberg JM, Singh R, Wang Y, et al. JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology 2006;43:163-172. https://doi.org/10.1002/hep.20999
  210. Wang Y, Ausman LM, Russell RM, Greenberg AS, Wang XD. Increased apoptosis in high-fat diet-induced nonalcoholic steatohepatitis in rats is associated with c-Jun NH2-terminal kinase activation and elevated proapoptotic Bax. J Nutr 2008;138:1866-1871.
  211. Larter CZ, Yeh MM, Haigh WG, et al. Hepatic free fatty acids accumulate in experimental steatohepatitis: role of adaptive pathways. J Hepatol 2008;48:638-647. https://doi.org/10.1016/j.jhep.2007.12.011
  212. Larter CZ, Yeh MM, Van Rooyen DM, Brooling J, Ghatora K, Farrell GC. Peroxisome proliferator-activated receptor-alpha agonist, Wy 14,643, improves metabolic indices, steatosis and ballooning in diabetic mice with non-alcoholic steatohepatitis. J Gastroenterol Hepatol 2012;27:341-350. https://doi.org/10.1111/j.1440-1746.2011.06939.x
  213. Ferreira DM, Castro RE, Machado MV, et al. Apoptosis and insulin resistance in liver and peripheral tissues of morbidly obese patients is associated with different stages of non-alcoholic fatty liver disease. Diabetologia 2011;54:1788-1798. https://doi.org/10.1007/s00125-011-2130-8
  214. Malhi H, Bronk SF, Werneburg NW, Gores GJ. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem 2006;281:12093-12101. https://doi.org/10.1074/jbc.M510660200
  215. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994;12:991-1045. https://doi.org/10.1146/annurev.iy.12.040194.005015
  216. Gallucci S, Lolkema M, Matzinger P. Natural adjuvants: endogenous activators of dendritic cells. Nat Med 1999;5:1249-1255. https://doi.org/10.1038/15200
  217. Zhang Q, Raoof M, Chen Y, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 2010;464:104-107. https://doi.org/10.1038/nature08780
  218. Bianchi ME. HMGB1 loves company. J Leukoc Biol 2009;86:573-576. https://doi.org/10.1189/jlb.1008585
  219. Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M. Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol 2007;47:571-579.
  220. Ellett JD, Evans ZP, Atkinson C, Schmidt MG, Schnellmann RG, Chavin KD. Toll-like receptor 4 is a key mediator of murine steatotic liver warm ischemia/reperfusion injury. Liver Transpl 2009;15:1101-1109. https://doi.org/10.1002/lt.21782
  221. Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM. Toll-like receptors in ischemia-reperfusion injury. Shock 2009;32:4-16. https://doi.org/10.1097/SHK.0b013e318193e333
  222. Ajamiah H, Farrell G, Wong HJ, et al. Artorvastatin protects obese mice against hepatic ischemia-reperfusion injury by TLR4 suppression and eNOS activation. J Gastroenterol Hepatol. Epub 2012 Mar 20. DOI: 10.1111/j.1440-1746.2012.07123.x.
  223. Szabo G, Velayudham A, Romics L Jr, Mandrekar P. Modulation of non-alcoholic steatohepatitis by pattern recognition receptors in mice: the role of toll-like receptors 2 and 4. Alcohol Clin Exp Res 2005;29:140S-145S. https://doi.org/10.1097/01.alc.0000189287.83544.33
  224. Spruss A, Kanuri G, Wagnerberger S, Haub S, Bischoff SC, Bergheim I. Toll-like receptor 4 is involved in the development of fructose-induced hepatic steatosis in mice. Hepatology 2009;50:1094-1104. https://doi.org/10.1002/hep.23122
  225. Wagnerberger S, Spruss A, Kanuri G, et al. Toll-like receptors 1-9 are elevated in livers with fructose-induced hepatic steatosis. Br J Nutr. Epub 2011 Oct 10. DOI: 10.1017/S0007114511004983.
  226. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006;116:3015-3025. https://doi.org/10.1172/JCI28898
  227. Konner AC, Bruning JC. Toll-like receptors: linking inflammation to metabolism. Trends Endocrinol Metab 2011;22:16-23. https://doi.org/10.1016/j.tem.2010.08.007
  228. Fessler MB, Rudel LL, Brown JM. Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome. Curr Opin Lipidol 2009;20:379-385. https://doi.org/10.1097/MOL.0b013e32832fa5c4
  229. Csak T, Velayudham A, Hritz I, et al. Deficiency in myeloid differentiation factor-2 and toll-like receptor 4 expression attenuates nonalcoholic steatohepatitis and fibrosis in mice. Am J Physiol Gastrointest Liver Physiol 2011;300:G433-G441. https://doi.org/10.1152/ajpgi.00163.2009
  230. De Nardo D, De Nardo CM, Nguyen T, Hamilton JA, Scholz GM. Signaling crosstalk during sequential TLR4 and TLR9 activation amplifies the inflammatory response of mouse macrophages. J Immunol 2009;183:8110-8118. https://doi.org/10.4049/jimmunol.0901031
  231. Vijay-Kumar M, Aitken JD, Carvalho FA, et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010;328:228-231. https://doi.org/10.1126/science.1179721
  232. Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int 2006;26:1175-1186. https://doi.org/10.1111/j.1478-3231.2006.01342.x
  233. Canbay A, Feldstein AE, Higuchi H, et al. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 2003;38:1188-1198. https://doi.org/10.1053/jhep.2003.50472
  234. Stienstra R, Saudale F, Duval C, et al. Kupffer cells promote hepatic steatosis via interleukin-1beta-dependent suppression of peroxisome proliferator-activated receptor alpha activity. Hepatology 2010;51:511-522. https://doi.org/10.1002/hep.23337
  235. Listenberger LL, Han X, Lewis SE, et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci U S A 2003;100:3077-3082. https://doi.org/10.1073/pnas.0630588100
  236. Yamaguchi K, Yang L, McCall S, et al. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 2007;45:1366-1374. https://doi.org/10.1002/hep.21655
  237. Brown MS, Goldstein JL. Selective versus total insulin resistance: a pathogenic paradox. Cell Metab 2008;7:95-96. https://doi.org/10.1016/j.cmet.2007.12.009

Cited by

  1. Progression of Chronic Liver Inflammation and Fibrosis Driven by Activation of c-JUN Signaling in Sirt6 Mutant Mice vol.287, pp.50, 2012, https://doi.org/10.1074/jbc.m112.415182
  2. Effects of Metformin, Pioglitazone, and Silymarin Treatment on Non-Alcoholic Fatty Liver Disease: A Randomized Controlled Pilot Study vol.12, pp.8, 2012, https://doi.org/10.5812/hepatmon.6099
  3. Non-alcoholic fatty liver disease and cardiovascular disease: epidemiological, clinical and pathophysiological evidences vol.7, pp.suppl3, 2012, https://doi.org/10.1007/s11739-012-0819-4
  4. Non-Hfe Iron Overload: Is Phlebotomy the Answer? vol.12, pp.1, 2012, https://doi.org/10.1007/s11901-012-0153-3
  5. Association of Nicotinamide-N-Methyltransferase Gene rs694539 Variant with Patients with Nonalcoholic Steatohepatitis vol.17, pp.11, 2013, https://doi.org/10.1089/gtmb.2013.0309
  6. The Evolving Scenario of Copper and Fatty Liver vol.11, pp.1, 2012, https://doi.org/10.1089/met.2013.1501
  7. Neutralization of interleukin-17 attenuates high fat diet-induced non-alcoholic fatty liver disease in mice vol.45, pp.9, 2012, https://doi.org/10.1093/abbs/gmt065
  8. Microarray analysis provides new insights into the function of apolipoprotein O in HepG2 cell line vol.12, pp.None, 2012, https://doi.org/10.1186/1476-511x-12-186
  9. Diabetes and Nonalcoholic Fatty Liver Disease: A Pathogenic Duo vol.34, pp.1, 2013, https://doi.org/10.1210/er.2012-1009
  10. Novel therapeutic targets for nonalcoholic fatty liver disease vol.17, pp.7, 2012, https://doi.org/10.1517/14728222.2013.789502
  11. Green tea with high-density catechins improves liver function and fat infiltration in non-alcoholic fatty liver disease (NAFLD) patients: A double-blind placebo-controlled study vol.32, pp.5, 2012, https://doi.org/10.3892/ijmm.2013.1503
  12. Paraoxonase-1 Deficiency Is Associated with Severe Liver Steatosis in Mice Fed a High-fat High-cholesterol Diet: A Metabolomic Approach vol.12, pp.4, 2013, https://doi.org/10.1021/pr400050u
  13. The acceleration of aging and Alzheimer’s disease through the biological mechanisms behind obesity and type II diabetes vol.5, pp.5, 2012, https://doi.org/10.4236/health.2013.55121
  14. Nonalcoholic steatohepatitis in nonalcoholic fatty liver disease patients of Bangladesh vol.5, pp.5, 2012, https://doi.org/10.4254/wjh.v5.i5.281
  15. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation : Systems biology of AT metabolism vol.5, pp.4, 2012, https://doi.org/10.1002/wsbm.1213
  16. Nutritional Management of Insulin Resistance in Nonalcoholic Fatty Liver Disease (NAFLD) vol.5, pp.10, 2012, https://doi.org/10.3390/nu5104093
  17. Macrophage Specific Caspase-1/11 Deficiency Protects against Cholesterol Crystallization and Hepatic Inflammation in Hyperlipidemic Mice vol.8, pp.12, 2012, https://doi.org/10.1371/journal.pone.0078792
  18. Purinergic receptor X7 is a key modulator of metabolic oxidative stress-mediated autophagy and inflammation in experimental nonalcoholic steatohepatitis vol.305, pp.12, 2012, https://doi.org/10.1152/ajpgi.00235.2013
  19. Increased expression of c-Jun in nonalcoholic fatty liver disease vol.94, pp.4, 2012, https://doi.org/10.1038/labinvest.2014.3
  20. The human gut microbiota: a dynamic interplay with the host from birth to senescence settled during childhood vol.76, pp.1, 2012, https://doi.org/10.1038/pr.2014.49
  21. RORα Decreases Oxidative Stress Through the Induction of SOD2 and GPx1 Expression and Thereby Protects Against Nonalcoholic Steatohepatitis in Mice vol.21, pp.15, 2012, https://doi.org/10.1089/ars.2013.5655
  22. Susceptibility of Nrf2-Null Mice to Steatohepatitis and Cirrhosis upon Consumption of a High-Fat Diet Is Associated with Oxidative Stress, Perturbation of the Unfolded Protein Response, and Disturbanc vol.34, pp.17, 2014, https://doi.org/10.1128/mcb.00677-14
  23. Cholelithiasis and the risk of liver cancer: results from cohort studies of 134 546 Chinese men and women vol.68, pp.6, 2012, https://doi.org/10.1136/jech-2013-203503
  24. Emodin attenuates systemic and liver inflammation in hyperlipidemic mice administrated with lipopolysaccharides vol.239, pp.8, 2014, https://doi.org/10.1177/1535370214530247
  25. Non-alcoholic fatty liver disease: What the clinician needs to know vol.20, pp.36, 2012, https://doi.org/10.3748/wjg.v20.i36.12956
  26. Har silibinin en plass i behandlingen av leversykdommer? vol.134, pp.4, 2012, https://doi.org/10.4045/tidsskr.13.1531
  27. Obesity-mediated association between exposure to brominated trihalomethanes and type II diabetes mellitus: An exploratory analysis vol.485, pp.None, 2012, https://doi.org/10.1016/j.scitotenv.2014.03.075
  28. Mediterranean Diet and Health: Food Effects on Gut Microbiota and Disease Control vol.15, pp.7, 2012, https://doi.org/10.3390/ijms150711678
  29. Epigenetic Mechanisms Underlying the Link between Non-Alcoholic Fatty Liver Diseases and Nutrition vol.6, pp.8, 2012, https://doi.org/10.3390/nu6083303
  30. Does Vitamin C Deficiency Promote Fatty Liver Disease Development? vol.6, pp.12, 2012, https://doi.org/10.3390/nu6125473
  31. Caracterización de pacientes con enfermedad del hígado graso no alcohólica en un hospital de alta complejidad, Colombia 2013 vol.29, pp.4, 2014, https://doi.org/10.22516/25007440.421
  32. Elevated free cholesterol in a p62 overexpression model of non-alcoholic steatohepatitis vol.20, pp.47, 2014, https://doi.org/10.3748/wjg.v20.i47.17839
  33. Bariatric Surgery and Non-Alcoholic Fatty Liver Disease: a Systematic Review of Liver Biochemistry and Histology vol.25, pp.12, 2012, https://doi.org/10.1007/s11695-015-1691-x
  34. The role of iNOS in cholesterol-induced liver fibrosis vol.95, pp.8, 2012, https://doi.org/10.1038/labinvest.2015.67
  35. Spinal Cord Injury Causes Chronic Liver Pathology in Rats vol.32, pp.3, 2012, https://doi.org/10.1089/neu.2014.3497
  36. Effects of Soothing Liver and Invigorating Spleen Recipes on the IKKβ-NF-κB Signaling Pathway in Kupffer Cells of Nonalcoholic Steatohepatitis Rats vol.2015, pp.None, 2012, https://doi.org/10.1155/2015/687690
  37. Moderate activation of IKK2-NF-kB in unstressed adult mouse liver induces cytoprotective genes and lipogenesis without apparent signs of inflammation or fibrosis vol.15, pp.None, 2012, https://doi.org/10.1186/s12876-015-0325-z
  38. Early to Phase II drugs currently under investigation for the treatment of liver fibrosis vol.24, pp.3, 2012, https://doi.org/10.1517/13543784.2015.997874
  39. Gut microbiota and host metabolism in liver cirrhosis vol.21, pp.41, 2012, https://doi.org/10.3748/wjg.v21.i41.11597
  40. Peroxisome proliferator-activated receptor-delta agonist ameliorated inflammasome activation in nonalcoholic fatty liver disease vol.21, pp.45, 2012, https://doi.org/10.3748/wjg.v21.i45.12787
  41. Non-alcohol fatty liver disease in Asia: Prevention and planning vol.7, pp.13, 2015, https://doi.org/10.4254/wjh.v7.i13.1788
  42. Cardiovascular risk across the histological spectrum and the clinical manifestations of non-alcoholic fatty liver disease: An update vol.21, pp.22, 2012, https://doi.org/10.3748/wjg.v21.i22.6820
  43. NADPH Oxidase-Derived Peroxynitrite Drives Inflammation in Mice and Human Nonalcoholic Steatohepatitis via TLR4-Lipid Raft Recruitment vol.185, pp.7, 2012, https://doi.org/10.1016/j.ajpath.2015.03.024
  44. Replacement of Dietary Saturated Fat by PUFA-Rich Pumpkin Seed Oil Attenuates Non-Alcoholic Fatty Liver Disease and Atherosclerosis Development, with Additional Health Effects of Virgin over Refined O vol.10, pp.9, 2012, https://doi.org/10.1371/journal.pone.0139196
  45. Sex hormone affects the severity of non-alcoholic steatohepatitis through the MyD88-dependent IL-6 signaling pathway vol.240, pp.10, 2015, https://doi.org/10.1177/1535370215570189
  46. Epigenetic mechanisms in non-alcoholic fatty liver disease: An emerging field vol.7, pp.24, 2012, https://doi.org/10.4254/wjh.v7.i24.2497
  47. Murine models provide insight to the development of non-alcoholic fatty liver disease vol.28, pp.2, 2015, https://doi.org/10.1017/s0954422415000128
  48. Is hepatic lipogenesis fundamental for NAFLD/NASH? A focus on the nuclear receptor coactivator PGC-1β vol.73, pp.20, 2016, https://doi.org/10.1007/s00018-016-2331-x
  49. Pu-erh tea extract ameliorates high-fat diet-induced nonalcoholic steatohepatitis and insulin resistance by modulating hepatic IL-6/STAT3 signaling in mice vol.51, pp.8, 2016, https://doi.org/10.1007/s00535-015-1154-0
  50. C-X-C motif chemokine 10 in non-alcoholic steatohepatitis: role as a pro-inflammatory factor and clinical implication vol.18, pp.None, 2012, https://doi.org/10.1017/erm.2016.16
  51. Protective Effects of Celastrol on Diabetic Liver Injury via TLR4/MyD88/NF- κ B Signaling Pathway in Type 2 Diabetic Rats vol.2016, pp.None, 2012, https://doi.org/10.1155/2016/2641248
  52. Qingchang Wenzhong Decoction Ameliorates Dextran Sulphate Sodium-Induced Ulcerative Colitis in Rats by Downregulating the IP10/CXCR3 Axis-Mediated Inflammatory Response vol.2016, pp.None, 2012, https://doi.org/10.1155/2016/4312538
  53. Role of Uric Acid Metabolism-Related Inflammation in the Pathogenesis of Metabolic Syndrome Components Such as Atherosclerosis and Nonalcoholic Steatohepatitis vol.2016, pp.None, 2012, https://doi.org/10.1155/2016/8603164
  54. A Novel Wistar Rat Model of Obesity-Related Nonalcoholic Fatty Liver Disease Induced by Sucrose-Rich Diet vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/9127076
  55. Immune Imbalances in Non-Alcoholic Fatty Liver Disease: From General Biomarkers and Neutrophils to Interleukin-17 Axis Activation and New Therapeutic Targets vol.7, pp.None, 2012, https://doi.org/10.3389/fimmu.2016.00490
  56. Contribution of Macrophage Polarization to Metabolic Diseases vol.23, pp.1, 2012, https://doi.org/10.5551/jat.32359
  57. Cardiovascular risk assessment in the treatment of nonalcoholic steatohepatitis: a secondary analysis of the MOZART trial vol.9, pp.2, 2012, https://doi.org/10.1177/1756283x15621232
  58. Pathophysiological mechanisms and therapeutic potentials of macrophages in non-alcoholic steatohepatitis vol.20, pp.5, 2016, https://doi.org/10.1517/14728222.2016.1125883
  59. Epigenetic Activation of Wnt/β-Catenin Signaling in NAFLD-Associated Hepatocarcinogenesis vol.8, pp.8, 2012, https://doi.org/10.3390/cancers8080076
  60. Macrophage Stimulating Protein Enhances Hepatic Inflammation in a NASH Model vol.11, pp.9, 2012, https://doi.org/10.1371/journal.pone.0163843
  61. Glycine prevents metabolic steatohepatitis in diabetic KK-Ay mice through modulation of hepatic innate immunity vol.311, pp.6, 2012, https://doi.org/10.1152/ajpgi.00465.2015
  62. Cluster of Differentiation 36 Deficiency Aggravates Macrophage Infiltration and Hepatic Inflammation by Upregulating Monocyte Chemotactic Protein-1 Expression of Hepatocytes Through Histone Deacetylas vol.27, pp.4, 2017, https://doi.org/10.1089/ars.2016.6808
  63. Steatosis induced CCL5 contributes to early-stage liver fibrosis in nonalcoholic fatty liver disease progress vol.180, pp.None, 2017, https://doi.org/10.1016/j.trsl.2016.08.006
  64. Comprehensive Study of Multiple Stages Progressing to Nonalcoholic Steatohepatitis with Subsequent Fibrosis in SD Rats vol.18, pp.8, 2012, https://doi.org/10.3390/ijms18081681
  65. Combination of Hypertension Along with a High Fat and Cholesterol Diet Induces Severe Hepatic Inflammation in Rats via a Signaling Network Comprising NF-κB, MAPK, and Nrf2 Pathways vol.9, pp.9, 2012, https://doi.org/10.3390/nu9091018
  66. Berberine ameliorates non-alcoholic steatohepatitis in ApoE −/− mice vol.14, pp.5, 2012, https://doi.org/10.3892/etm.2017.5051
  67. The Transcriptomic Signature Of Disease Development And Progression Of Nonalcoholic Fatty Liver Disease vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-17370-6
  68. Treatment with a Catalytic Superoxide Dismutase (SOD) Mimetic Improves Liver Steatosis, Insulin Sensitivity, and Inflammation in Obesity-Induced Type 2 Diabetes vol.6, pp.4, 2012, https://doi.org/10.3390/antiox6040085
  69. trans-Chalcone prevents insulin resistance and hepatic inflammation and also promotes hepatic cholesterol efflux in high-fat diet-fed rats: modulation of miR-34a-, miR-451-, and miR-33a-related pathwa vol.9, pp.8, 2012, https://doi.org/10.1039/c8fo00923f
  70. SKLB023 as an iNOS inhibitor alleviated liver fibrosis by inhibiting the TGF-beta/Smad signaling pathway vol.8, pp.54, 2012, https://doi.org/10.1039/c8ra04955f
  71. Dietary Green Tea Extract Prior to Spinal Cord Injury Prevents Hepatic Iron Overload but Does Not Improve Chronic Hepatic and Spinal Cord Pathology in Rats vol.35, pp.24, 2018, https://doi.org/10.1089/neu.2018.5771
  72. Intestinal Microbiome Shifts, Dysbiosis, Inflammation, and Non-alcoholic Fatty Liver Disease vol.9, pp.None, 2012, https://doi.org/10.3389/fmicb.2018.00061
  73. Effect of celastrol on toll-like receptor 4-mediated inflammatory response in free fatty acid-induced HepG2 cells vol.42, pp.4, 2012, https://doi.org/10.3892/ijmm.2018.3775
  74. Microcirculatory disturbances and cellular changes during progression of hepatic steatosis to liver tumors vol.243, pp.1, 2012, https://doi.org/10.1177/1535370217738730
  75. Extract of Citrus maxima (pummelo) leaves improve hepatoprotective activity in Wistar rats submitted to the induction of non-alcoholic hepatic steatosis vol.98, pp.None, 2012, https://doi.org/10.1016/j.biopha.2017.12.070
  76. Genetic and Epigenetic Regulation in Nonalcoholic Fatty Liver Disease (NAFLD) vol.19, pp.3, 2012, https://doi.org/10.3390/ijms19030911
  77. Coagonist of glucagon-like peptide-1 and glucagon receptors ameliorates nonalcoholic fatty liver disease vol.96, pp.6, 2012, https://doi.org/10.1139/cjpp-2017-0683
  78. Hepatocyte nuclear receptor SHP suppresses inflammation and fibrosis in a mouse model of nonalcoholic steatohepatitis vol.293, pp.22, 2012, https://doi.org/10.1074/jbc.ra117.001653
  79. CB1 receptor blockade ameliorates hepatic fat infiltration and inflammation and increases Nrf2-AMPK pathway in a rat model of severely uncontrolled diabetes vol.13, pp.10, 2012, https://doi.org/10.1371/journal.pone.0206152
  80. Stable Isotope-Labeled Lipidomics to Unravel the Heterogeneous Development Lipotoxicity vol.23, pp.11, 2012, https://doi.org/10.3390/molecules23112862
  81. Stress of Strains: Inbred Mice in Liver Research vol.19, pp.1, 2018, https://doi.org/10.3727/105221618x15337408678723
  82. Matrine Protects Against MCD-Induced Development of NASH via Upregulating HSP72 and Downregulating mTOR in a Manner Distinctive From Metformin vol.10, pp.None, 2012, https://doi.org/10.3389/fphar.2019.00405
  83. Spirulina Liquid Extract Protects against Fibrosis Related to Non-Alcoholic Steatohepatitis and Increases Ursodeoxycholic Acid vol.11, pp.1, 2012, https://doi.org/10.3390/nu11010194
  84. Recent Insights Into the Multiple Pathways Driving Non-alcoholic Steatohepatitis-Derived Hepatocellular Carcinoma vol.9, pp.None, 2012, https://doi.org/10.3389/fonc.2019.00762
  85. Effect of Soothing Gan (Liver) and Invigorating Pi (Spleen) Recipes on TLR4-p38 MAPK Pathway in Kupffer Cells of Non-alcoholic Steatohepatitis Rats vol.25, pp.3, 2019, https://doi.org/10.1007/s11655-018-2829-6
  86. The target cells of anthocyanins in metabolic syndrome vol.59, pp.6, 2019, https://doi.org/10.1080/10408398.2018.1491022
  87. A maresin 1/RORα/12-lipoxygenase autoregulatory circuit prevents inflammation and progression of nonalcoholic steatohepatitis vol.129, pp.4, 2012, https://doi.org/10.1172/jci124219
  88. Hepatoprotective Effect of Kombucha Tea in Rodent Model of Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis vol.20, pp.9, 2019, https://doi.org/10.3390/ijms20092369
  89. FTY720/fingolimod decreases hepatic steatosis and expression of fatty acid synthase in diet-induced nonalcoholic fatty liver disease in mice vol.60, pp.7, 2019, https://doi.org/10.1194/jlr.m093799
  90. Serum coding and non‐coding RNAs as biomarkers of NAFLD and fibrosis severity vol.39, pp.9, 2012, https://doi.org/10.1111/liv.14167
  91. Agaricus brasiliensis KA21 May Prevent Diet-Induced Nash Through Its Antioxidant, Anti-Inflammatory, and Anti-Fibrotic Activities in the Liver vol.8, pp.11, 2019, https://doi.org/10.3390/foods8110546
  92. β-Cyclodextrin counteracts obesity in Western diet-fed mice but elicits a nephrotoxic effect vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-53890-z
  93. The severity of rat liver injury by fructose and high fat depends on the degree of respiratory dysfunction and oxidative stress induced in mitochondria vol.18, pp.None, 2012, https://doi.org/10.1186/s12944-019-1024-5
  94. Les mécanismes de mort cellulaire dans la stéatohépatite non alcoolique vol.214, pp.1, 2020, https://doi.org/10.1051/jbio/2020002
  95. Transcriptomics-driven Evaluation on Liver Toxicity Using Adverse Outcome Pathways (AOP) vol.140, pp.4, 2012, https://doi.org/10.1248/yakushi.19-00190-3
  96. Effects of grape juice, red wine and resveratrol on liver parameters of rat submitted high-fat diet vol.92, pp.2, 2012, https://doi.org/10.1590/0001-3765202020191230
  97. Dyslipidemic Diet Induces Mobilization of Peripheral Neutrophils and Monocytes That Exacerbate Hemorrhagic Brain Injury and Neuroinflammation vol.14, pp.None, 2012, https://doi.org/10.3389/fncel.2020.00154
  98. Emergent Properties of the HNF4α-PPARγ Network May Drive Consequent Phenotypic Plasticity in NAFLD vol.9, pp.3, 2012, https://doi.org/10.3390/jcm9030870
  99. Impact of global PTP1B deficiency on the gut barrier permeability during NASH in mice vol.35, pp.None, 2020, https://doi.org/10.1016/j.molmet.2020.01.018
  100. Plant Compounds for the Treatment of Diabetes, a Metabolic Disorder: NF-κB as a Therapeutic Target vol.26, pp.None, 2012, https://doi.org/10.2174/1381612826666200730221035
  101. 6-Amino[1,2,5]oxadiazolo[3,4-b]pyrazin-5-ol Derivatives as Efficacious Mitochondrial Uncouplers in STAM Mouse Model of Nonalcoholic Steatohepatitis vol.63, pp.11, 2020, https://doi.org/10.1021/acs.jmedchem.0c00542
  102. Histological and Biochemical Changes in Adult Male Rat Liver after Spinal Cord Injury with Evaluation of the Role of Granulocyte-Colony Stimulating Factor vol.44, pp.4, 2012, https://doi.org/10.1080/01913123.2020.1844829
  103. Metabolic Profiling Reveals Aggravated Non-Alcoholic Steatohepatitis in High-Fat High-Cholesterol Diet-Fed Apolipoprotein E-Deficient Mice Lacking Ron Receptor Signaling vol.10, pp.8, 2020, https://doi.org/10.3390/metabo10080326
  104. Post-weaning exposure to high-sucrose diet induces early non-alcoholic fatty liver disease onset and progression in male mice: role of dysfunctional white adipose tissue vol.11, pp.5, 2012, https://doi.org/10.1017/s2040174420000598
  105. Tissue-Resident Memory T Cells in the Liver—Unique Characteristics of Local Specialists vol.9, pp.11, 2012, https://doi.org/10.3390/cells9112457
  106. The incidence of COVID-19 in patients with metabolic syndrome and non-alcoholic steatohepatitis: A population-based study vol.8, pp.None, 2012, https://doi.org/10.1016/j.metop.2020.100057
  107. The endothelial dysfunction blocker CU06-1004 ameliorates choline-deficient L-amino acid diet-induced non-alcoholic steatohepatitis in mice vol.15, pp.12, 2012, https://doi.org/10.1371/journal.pone.0243497
  108. Diosmetin Ameliorates Nonalcoholic Steatohepatitis through Modulating Lipogenesis and Inflammatory Response in a STAT1/CXCL10-Dependent Manner vol.69, pp.2, 2012, https://doi.org/10.1021/acs.jafc.0c06652
  109. Recent Advances of Microbiome-Associated Metabolomics Profiling in Liver Disease: Principles, Mechanisms, and Applications vol.22, pp.3, 2012, https://doi.org/10.3390/ijms22031160
  110. Endoplasmic Reticulum Stress Signaling and the Pathogenesis of Hepatocarcinoma vol.22, pp.4, 2012, https://doi.org/10.3390/ijms22041799
  111. Aloin protects mice from diet-induced non-alcoholic steatohepatitis via activation of Nrf2/HO-1 signaling vol.12, pp.2, 2012, https://doi.org/10.1039/d0fo02684k
  112. Nonalcoholic fatty liver disease (NAFLD) severity is associated to a nonhemostatic contribution and proinflammatory phenotype of platelets vol.231, pp.None, 2012, https://doi.org/10.1016/j.trsl.2020.11.003
  113. Liver injury after small bowel resection is prevented in obesity-resistant 129S1/SvImJ mice vol.320, pp.5, 2021, https://doi.org/10.1152/ajpgi.00284.2020
  114. Deregulation of Secreted Frizzled-Related Protein 5 in Nonalcoholic Fatty Liver Disease Associated with Obesity vol.22, pp.13, 2012, https://doi.org/10.3390/ijms22136895
  115. Hepatocyte and immune cell crosstalk in non-alcoholic fatty liver disease vol.15, pp.7, 2012, https://doi.org/10.1080/17474124.2021.1887730
  116. Modeling alcohol-associated liver disease in a human Liver-Chip vol.36, pp.3, 2021, https://doi.org/10.1016/j.celrep.2021.109393
  117. Immunonano-Lipocarrier-Mediated Liver Sinusoidal Endothelial Cell-Specific RUNX1 Inhibition Impedes Immune Cell Infiltration and Hepatic Inflammation in Murine Model of NASH vol.22, pp.16, 2012, https://doi.org/10.3390/ijms22168489
  118. Coffee Restores Expression of lncRNAs Involved in Steatosis and Fibrosis in a Mouse Model of NAFLD vol.13, pp.9, 2012, https://doi.org/10.3390/nu13092952
  119. Pharmaconutrition strategy to resolve SARS-CoV-2-induced inflammatory cytokine storm in non-alcoholic fatty liver disease: Omega-3 long-chain polyunsaturated fatty acids vol.9, pp.31, 2012, https://doi.org/10.12998/wjcc.v9.i31.9333
  120. The hepatocyte IKK:NF-κB axis promotes liver steatosis by stimulating de novo lipogenesis and cholesterol synthesis vol.54, pp.None, 2012, https://doi.org/10.1016/j.molmet.2021.101349
  121. TWIST2 and the PPAR signaling pathway are important in the progression of nonalcoholic steatohepatitis vol.20, pp.1, 2012, https://doi.org/10.1186/s12944-021-01458-0
  122. Insulin treatment improves liver histopathology and decreases expression of inflammatory and fibrogenic genes in a hyperglycemic, dyslipidemic hamster model of NAFLD vol.19, pp.1, 2021, https://doi.org/10.1186/s12967-021-02729-1
  123. The Role of Physical Activity in Nonalcoholic and Metabolic Dysfunction Associated Fatty Liver Disease vol.9, pp.12, 2012, https://doi.org/10.3390/biomedicines9121853
  124. Recent Advances in Adipose Tissue Dysfunction and Its Role in the Pathogenesis of Non-Alcoholic Fatty Liver Disease vol.10, pp.12, 2012, https://doi.org/10.3390/cells10123300
  125. Hepatoprotective effects of gemigliptin and empagliflozin in a murine model of diet-induced non-alcoholic fatty liver disease vol.588, pp.None, 2012, https://doi.org/10.1016/j.bbrc.2021.12.065
  126. Dysfunction of aged liver of male albino rats and the effect of intermitted fasting; Biochemical, histological, and immunohistochemical study vol.103, pp.None, 2012, https://doi.org/10.1016/j.intimp.2021.108465