DOI QR코드

DOI QR Code

Site-Specific Synthesis of ZnO Nanocrystalline Networks via a Hydrothermal Method

  • Yi, Jaeseok (Division of Materials Science and Engineering) ;
  • Kim, Ji-Yeob (Division of Materials Science and Engineering) ;
  • Jin, Hyang Gi (Division of Materials Science and Engineering) ;
  • Song, Seungmok (School of Mechanical Engineering, Hanyang University) ;
  • Choi, Changhwan (Division of Materials Science and Engineering) ;
  • Nichols, William T. (Division of Materials Science and Engineering) ;
  • Park, Won Il (Division of Materials Science and Engineering)
  • Published : 2012.10.20

Abstract

ZnO nanocrystalline networks (NCNWs) consisting of percolating nanocrystals with irregular shape and size were synthesized using Al seed layers in a hydrothermal process. Various thicknesses of Al films were used to assess the effects of film thickness on the formation of ZnO NCNWs; the coverage and size of the ZnO nanocrystals increased with an increasing Al film thickness. In addition, by exploiting the seed layer-dependent crystal growth behaviors, two distinctly different ZnO nanostructures, nanorods on ZnO seed and NCNWs on Al seed, could be selectively achieved on the same substrate under the same growth conditions. Spectrally- and spatially-resolved investigations of these two ZnO nanostructures were performed using cathodoluminescence, which provided a significant opportunity to study the effect of the nanostructures on the luminescent characteristics. The ZnO NCNWs have an extremely high surface to volume ratio and sufficient inter-space, which enabled the conversion of the surface property from hydrophilic to superhydrophobic.

Keywords

References

  1. W. I. Park, D. Kim, S.W. Jung, and G.-C. Yi, Appl. Phys. Lett. 80, 4232 (2002). https://doi.org/10.1063/1.1482800
  2. W. I. Park, G.-C. Yi, M. Kim, and S. J. Pennycook, Adv. Mater. 14, 1841 (2002). https://doi.org/10.1002/adma.200290015
  3. T. Song, J. W. Choung, J.-G. Park, W. I. Park, J. A. Rogers, and U. Paik, Adv. Mater. 20, 4464 (2008). https://doi.org/10.1002/adma.200801190
  4. B. K. Yu, J. J. Han, and O. S. Song, Korean J. Met. Mater. 48, 1109 (2010).
  5. X. Y. Kong, Y. Ding, R. Yang, and Z. L. Wang, Science 303, 1348 (2004). https://doi.org/10.1126/science.1092356
  6. Y. J. Kim, J. H. Lee, and G.-C. Yi, Appl. Phys. Lett. 95, 213101 (2009). https://doi.org/10.1063/1.3266836
  7. W. I. Park, Met. Mater. Int. 14, 659 (2008). https://doi.org/10.3365/met.mat.2008.12.659
  8. W. I. Park, and G.-C. Yi, Adv. Mater. 16, 87 (2004). https://doi.org/10.1002/adma.200305729
  9. G. M. Ashley, P. B. Kirby, T. P. Butler, R. Whatmore, and J. K. Luo, J. Electrochem. Soc. 157, J419 (2010). https://doi.org/10.1149/1.3496003
  10. X. Wang, J. Song, J. Liu, and Z. L. Wang, Science 316, 102 (2007). https://doi.org/10.1126/science.1139366
  11. J. Yi, J. M. Lee, and W. I. Park, Sens. Actuators B 155, 264 (2011). https://doi.org/10.1016/j.snb.2010.12.033
  12. S. W. Kim, H. K. Park, M. S. Yi, N. M. Park, J. H. Park, S. H. Kim, S. L. Maeng, and C. J. Choi, S. E. Moon, Appl. Phys. Lett. 90, 033107 (2007). https://doi.org/10.1063/1.2430918
  13. S. Minko, M. Müller, M. Motornov, M. Nitschke, K. Grundke, and M. Stamm, J. Amer. Chem. Soc. 125, 3896 (2003). https://doi.org/10.1021/ja0279693
  14. Y. B. Pyun, J. Yi, D. H. Lee, K. S. Son, G. Liu, D. K. Yi, U. Paik, and W. I. Park, J. Mater. Chem. 20, 5136 (2010). https://doi.org/10.1039/c0jm00011f
  15. J. M. Lee, Y. B. Pyun, J. Yi, J. W. Choung, and W. I. Park, J. Phys. Chem. C 113, 19134 (2009). https://doi.org/10.1021/jp9078713
  16. L. Vayssieres, Adv. Mater. 15, 464 (2003). https://doi.org/10.1002/adma.200390108
  17. S.-L. Zhang, S.-M. Park, J.-O. Lim, and J.-S. Huh, Met. Mater. Int. 14, 621 (2008). https://doi.org/10.3365/met.mat.2008.10.621
  18. R. A. McBride, J. M. Kelly, and D. E. McCormack, J. Mater. Chem. 13, 1196 (2003). https://doi.org/10.1039/b211723c
  19. S. Xu, C. Lao, B. Weintraub, and Z. L. Wang, J. Mater. Res. 23, 2072 (2008). https://doi.org/10.1557/JMR.2008.0274
  20. Y. Gao, M. Nagai, Y. Masuda, F. Sato, W. Seo, and K. Koumoto, Langmuir 22, 3521 (2006). https://doi.org/10.1021/la052424i
  21. T. Sekiguchi, S. Miyashita, K. Obara, T. Shishido, and N. Sakagami, J. Cryst. Growth 214, 72 (2000).
  22. H. W. Lee, S. P. Lau, Y. G. Wang, K. Y. Tse, H. H. Hng, and B. K. Tay, Structural, J. Cryst. Growth 268, 596 (2004). https://doi.org/10.1016/j.jcrysgro.2004.04.098
  23. A. B. Djurisi and Y. H. Leung, Small 2, 944 (2006). https://doi.org/10.1002/smll.200600134
  24. A. B. D. Cassie, and S. Baxter, Trans. Faraday. Soc. 40, 546 (1944). https://doi.org/10.1039/tf9444000546
  25. L.-Y. Chen, C.-H. Lai, P.-W. Wu, and S.-K. Fan, J. Electrochem. Soc. 158, 93 (2011).

Cited by

  1. Effect of solution concentration on the functional properties of ZnO nanostructures: Role of Hexamethylenetetramine vol.9, pp.3, 2012, https://doi.org/10.1007/s13391-013-2223-2
  2. Epitaxial Growth of Three-Dimensional ZnO and GaN Light Emitting Crystals vol.55, pp.2, 2012, https://doi.org/10.4191/kcers.2018.55.2.08