DOI QR코드

DOI QR Code

Electroless Ni-P-CNT Composite Coating on Aluminum Powder

  • Published : 2012.12.20

Abstract

Ni-P-CNT composite coatings were deposited on micro-sized aluminum particles using electroless plating technique and the effect of different process parameters on the microstructural characteristics of the produced composite coatings were investigated. The results showed that a uniform Ni-P-CNT composite coating could be successfully deposited on the aluminum particles provided the electroless processing parameters were adjusted carefully. The most favorable coating quality was achieved at bath temperature of $80^{\circ}C$, bath pH of 5.5 and CNT concentration of 1.25 g/lit. While a higher CNT concentration resulted in increased CNT agglomeration and poor CNT distribution in the Ni-P matrix, a lower CNT concentration resulted in fewer incorporated CNTs. Higher bath temperatures intensified the hydrogen gas evolution during the process and resulted in poor uniformity and presence of porosity in the coating. Low bath pH resulted in poor CNT incorporation and distribution in the Ni-P matrix and clustering of a large part of CNTs out of the coating.

Keywords

References

  1. W. Riedel, Electroless Nickel Plating, pp.1-5, Cambridge Scientific Abstracts, Ohio (1991).
  2. W. B. Hu, L. Liu, and Y. T. Wu, Chemical Industry Press, Peking 35, 14 (2003).
  3. A. Grosjean, M. Rezrazi, J. Takadoum, and P. Bercot, Surf. Coat. Technol. 137, 92 (2001). https://doi.org/10.1016/S0257-8972(00)01088-4
  4. I. Apachiteia, F. D. Tichelaarb, J. Duszczyka, and L. Katgermana, Surf. Coat. Technol. 149, 263 (2002). https://doi.org/10.1016/S0257-8972(01)01492-X
  5. L. G. Yu and X. S. Zhang, Thin Solid Films 229, 76 (1993). https://doi.org/10.1016/0040-6090(93)90412-I
  6. Y. Wu, H. Liu, B. Shen, L. Liu, and W. Hu, Tribol. Int. 39, 553 (2006). https://doi.org/10.1016/j.triboint.2005.04.032
  7. Z. Abdel Hamid, S. A. El Badry, and A. Abdel Aal, Surf. Coat. Technol. 201, 5948 (2007). https://doi.org/10.1016/j.surfcoat.2006.11.001
  8. Y. Wu, B. Shen, L. Liu, and W. Hu, Wear 261, 201 (2006). https://doi.org/10.1016/j.wear.2005.09.008
  9. S. C. Wang and W. C. J. Wei, Mater. Chem. Phys. 100, 395 (2003).
  10. S. Iijima, Nature 354, 56 (1991). https://doi.org/10.1038/354056a0
  11. R. H. Baughman, A. A. Zakhidov, and W. A. Heer, Science 297, 787 (2002). https://doi.org/10.1126/science.1060928
  12. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996). https://doi.org/10.1038/381678a0
  13. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997). https://doi.org/10.1126/science.277.5334.1971
  14. G. Overney, W. Zhong, and D. Tomanek, Z. Phys. D: At. Mol. Clusters 27, 93 (1993). https://doi.org/10.1007/BF01436769
  15. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992). https://doi.org/10.1063/1.107080
  16. T. Li, S. Qua, Z. Li, W. Tao, and M. Wang, Mater. Sci. Eng. A 500, 182 (2009). https://doi.org/10.1016/j.msea.2008.09.035
  17. L. Y. Wang, J. P. Tu, W. X. Chen, Y. C. Wang, X. K. Liu, C. Olk, D. H. Cheng, and X. B. Zhang, Wear 254, 1289 (2003). https://doi.org/10.1016/S0043-1648(03)00171-6
  18. Z. Yang, H. Xu, Y. L. Shi, M. K. Li, Y. Huang, and H. L. Li, Mater. Res. Bull. 40, 1001 (2005). https://doi.org/10.1016/j.materresbull.2005.02.015
  19. Z. Yang, H. Xu, M. K. Li, Y. L. Shi, Y. Huang, and H. L. Li, Thin Solid Films 466, 86 (2004). https://doi.org/10.1016/j.tsf.2004.02.016
  20. B. Abbasipour, B. Niroumand, and S. M. Monir Vaghefi, Trans. Nonferrous Met. Soc. China 20, 1561 (2010). https://doi.org/10.1016/S1003-6326(09)60339-3
  21. Q. Chen, C. Saltiel, S. Manickavasagam, L. S. Schadler, R. W. Siegel, and H. Yang, J. Colloid Interface Sci. 280, 91 (2004). https://doi.org/10.1016/j.jcis.2004.07.028
  22. B. Abbasipour, M. Sc. Thesis, pp.55-63, Isfahan University of Technology, Isfahan (2010).
  23. Z. A. Hamid and R. A. El-Adly, Plat. Surf. Finish. 86, 136 (1999).
  24. S. Shawki and Z. A. Hamid, Anti-Corros. Methods Mater. 44, 178 (1997). https://doi.org/10.1108/00035599710167142

Cited by

  1. Pressure infiltration processes to synthesize metal matrix composites - A review of metal matrix composites, the technology and process simulation vol.33, pp.12, 2012, https://doi.org/10.1080/10426914.2017.1328122
  2. Tribological properties of Fe-Ni-based composites with Ni-coated reduced graphene oxide-MoS2 vol.52, pp.19, 2018, https://doi.org/10.1177/0021998317752226
  3. Surface functionalization of nano MgO particles with nickel and cobalt vol.6, pp.8, 2012, https://doi.org/10.1088/2053-1591/ab278f
  4. Mechanical performance of micro-Cu and nano-Ag reinforced Al-CNT composite prepared by powder metallurgy technique vol.6, pp.10, 2012, https://doi.org/10.1088/2053-1591/ab3b21
  5. A Novel Joint of 18-8 Stainless Steel and Aluminum by Partial Welding Process to Ni-Plated Carbon Fiber Junction vol.61, pp.12, 2020, https://doi.org/10.2320/matertrans.mt-m2020199