DOI QR코드

DOI QR Code

Dielectric, Ferroelectric, and Piezoelectric Properties of Nb-substituted $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ Lead-free Ceramics

  • Pham, Ky-Nam (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Han Bok (School of Materials Science and Engineering, University of Ulsan) ;
  • Han, Hyoung-Su (School of Materials Science and Engineering, University of Ulsan) ;
  • Kang, Jin Kyu (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan) ;
  • Ullah, Aman (Department of Physics, University of Ulsan) ;
  • Ahn, Chang-Won (Department of Physics, University of Ulsan) ;
  • Kim, Ill Won (Department of Physics, University of Ulsan)
  • Published : 2012.01.31

Abstract

The effects of niobium substitution on the crystal structure and on the ferroelectric and piezoelectric properties of $Bi_{1/2}(Na_{0.82}K_{0.18})_{1/2}TiO_3$ (BNKT) ceramics have been investigated. X-ray diffraction analyses revealed that Nb-substitution induced a phase transition from the coexistence of rhombohedral-tetragonal symmetry to pseudocubic symmetry. Accordingly, the electric-fieldinduced polarization and strain hysteresis loops indicated that Nb substitution significantly disrupted the ferroelectric order of BNKT ceramics, leading to degradations in the remnant polarization, coercive field, and piezoelectric coefficient $d_{33}$. However, the destabilization of the ferroelectric order was accompanied by a significant enhancement in the electric-field-induced strain (EFIS), which peaked at x = 0.03 with a value of 0.47%. The abnormal enhancement in the EFIS could be attributed to a phase transition from a non-polar to a polar phase under an applied electric field.

Keywords

References

  1. T. Takenaka and H. Nagata, J. Eur. Ceram. Soc. 25, 2693 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
  2. T. R. Shrout and S. T. Zhang, J. Electroceram. 19, 111 (2007).
  3. J. Rodel, W. Jo, K. T. P. Seifert, E. M Anton and T. Granzow, J. Am. Ceram. Soc. 92, 1153 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  4. P. K. Panda, J. Mater. Sci. 44, 5049 (2009). https://doi.org/10.1007/s10853-009-3643-0
  5. G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya and N. N. Krainik, Sov. Phys. Solid State 2, 2651 (1961).
  6. T. Takenaka, K. Maruyama and K. Sakata, Jpn. J. Appl. Phys. 30, 2236 (1991). https://doi.org/10.1143/JJAP.30.2236
  7. Y. M. Chiang, G. W. Farrey and A. N. Soukhojak, Appl. Phys. Lett. 73, 3683 (1998). https://doi.org/10.1063/1.122862
  8. K. Sakata and Y. Masuda, Ferroelectrics 7, 347 (1974). https://doi.org/10.1080/00150197408238042
  9. J. R. Gomah-Pettry, P. Marchet, A. Salak, V. M. Ferreira and J. P. Mercurio, Integr. Ferroelectr. 61, 159 (2004). https://doi.org/10.1080/10584580490459099
  10. O. Elkechai, M. Manier and J. P. Mercurio, Phys. Status Solidi A 157, 499 (1996). https://doi.org/10.1002/pssa.2211570234
  11. A. Sasaki, T. Chiba, Y. Mamiya and E. Otsuki, Jpn. J. Appl. Phys. 38, 5564 (1999). https://doi.org/10.1143/JJAP.38.5564
  12. Z. Yang, B. Liu, L. Wei and Y. Hou, Mater. Res. Bull. 43, 81 (2008). https://doi.org/10.1016/j.materresbull.2007.02.016
  13. W. Zhao, H. Zhou, Y. Yan and D. Liu, Key Eng. Mater. 368, 1908 (2008).
  14. K. Yoshii, Y. Hiruma, H. Nagatha and T. Takenaka, Jpn. J. Appl. Phys. 45, 4493 (2006). https://doi.org/10.1143/JJAP.45.4493
  15. T. Takenaka, T. Okuda and T. Takegahara, Ferroelectrics 196, 175 (1997). https://doi.org/10.1080/00150199708224156
  16. H. Ishii, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys. 40, 5660 (2001). https://doi.org/10.1143/JJAP.40.5660
  17. H. Nagata, N. Koizumi, N. Kuroda, I. Igarashi and T. Takenaka, Ferroelectrics 229, 273 (1999). https://doi.org/10.1080/00150199908224350
  18. H. Nagata and T. Takenaka, Jpn. J. Appl. Phys. 36, 6055 (1997). https://doi.org/10.1143/JJAP.36.6055
  19. D. N. Binh, A. Hussain, H. D. Lee, I. W. Kim, J. S. Lee, I. W. Kim and W. P. Tai, J. Korean Phys. Soc. 57, 892 (2010). https://doi.org/10.3938/jkps.57.892
  20. A. Hussain, C. W. Ahn, J. S. Lee, A. Ullah and I. W. Kim, Sens. Actuators, A 158, 84 (2010). https://doi.org/10.1016/j.sna.2009.12.027
  21. J. C. Wurst and J. A. Nelson, J. Am. Ceram. Soc. 55, 109 (1972). https://doi.org/10.1111/j.1151-2916.1972.tb11224.x
  22. J. H. Cho, S. C. Lee, L. Wang, H. G. Yeo, Y. S. Sung, M. H. Kim and T. K. Song, J. Korean Phys. Soc. 56, 457 (2010). https://doi.org/10.3938/jkps.56.457
  23. H. G. Yeo, Y. S. Sung, T. K. Song, J. H. Cho and M. H. Kim, J. Korean Phys. Soc. 54, 896 (2009). https://doi.org/10.3938/jkps.54.896
  24. A. Ullah, C. W. Ahn, A. Hussain, I. W. Kim, H. I. Hwang and N. K. Cho, Solid State Commun. 150, 1145 (2010). https://doi.org/10.1016/j.ssc.2010.03.020
  25. A. Ullah, S. Y. Lee, H. J. Lee, I. W. Kim, C. W. Ahn, H. I. Hwang, A. Hussain and J. S. Lee, J. Korean Phys. Soc. 57, 1102 (2010). https://doi.org/10.3938/jkps.57.1102
  26. Q. Zheng, C. Xu, D. Lin, D. Gao and K. W. Kwok, J. Phys. D: Appl. Phys. 41, 124511 (2008).
  27. Y. S. Sung, J. M. Kim, J. H. Cho, T. K. Song, M. H. Kim and T. G. park, Appl. Phys. Lett. 98, 012902 (2011). https://doi.org/10.1063/1.3525370
  28. Y. S. Sung, J. M. Kim, J. H. Cho, T. K. Song, M. H. Kim, H. H. Chong, T. G. park, D. Do and S. S. Kim, Appl. Phys. Lett. 96, 022901 (2010). https://doi.org/10.1063/1.3275704
  29. K. T. P. Seifert, W. Jo and J. Rodel, J. Am. Ceram. Soc. 93, 1392 (2010).
  30. W. Jo, T. Granzow, E. Aulbach and J. Rodel, J. Appl. Phys. 105, 094102 (2009). https://doi.org/10.1063/1.3121203
  31. Y. Q. Yao, T. Y. Tseng, C. C. Chou and H. H. D. Chen, J. Appl. Phys. 102, 094102 (2007). https://doi.org/10.1063/1.2803725
  32. D. Lin and K. W. Kwok, Curr. Appl. Phys. 10, 1196 (2010). https://doi.org/10.1016/j.cap.2010.02.009
  33. G. Fan, W. Lu, X. Wang, F. Liang and J. Xiao, J. Phys. D: Appl. Phys. 41, 035403 (2008). https://doi.org/10.1088/0022-3727/41/3/035403
  34. Y. Hiruma, Y. O. Imai, Y. Watanabe, H. Nagata and T. Takenaka, Appl. Phys. Lett. 92, 262904 (2008). https://doi.org/10.1063/1.2955533
  35. S. T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H. J. Kleebe and J. Rodel, J. Appl. Phys. 103, 034107 (2008). https://doi.org/10.1063/1.2838472
  36. J. E. Daniels, W. Jo, J. Rodel and J. L Jones, J. Appl. Phys. Lett. 95, 032904 (2009). https://doi.org/10.1063/1.3182679

Cited by

  1. Enhancement in the microstructure and the strain properties of Bi1/2(Na,K)1/2TiO3-based lead-free ceramics by Li substitution vol.61, pp.6, 2012, https://doi.org/10.3938/jkps.61.895
  2. Low-temperature sintering of lead-free Bi1/2(Na,K)1/2TiO3-based electrostrictive ceramics with CuO addition vol.61, pp.6, 2012, https://doi.org/10.3938/jkps.61.899
  3. Bi1/2(Na0.8K0.2)1/2TiO3 세라믹스의 유전 및 압전 특성에 대한 Bi(Mg1/2Sn1/2)O3 변성 효과 vol.49, pp.3, 2012, https://doi.org/10.4191/kcers.2012.49.3.266
  4. Enhanced piezoelectric properties of lead-free 0.935(Bi0.5Na0.5)TiO3-0.065BaTiO3 thin films fabricated by using pulsed laser deposition vol.62, pp.7, 2012, https://doi.org/10.3938/jkps.62.1031
  5. Incipient piezoelectrics and electrostriction behavior in Sn-doped Bi1/2(Na0.82K0.18)1/2TiO3 lead-free ceramics vol.113, pp.15, 2012, https://doi.org/10.1063/1.4801893
  6. A-site Vacancy가 0.97Bi0.5+x(Na0.78K0.22)0.5-3xTiO3-0.03LaFeO3 무연압전 세라믹스의 압전특성에 미치는 영향 vol.51, pp.6, 2012, https://doi.org/10.4191/kcers.2014.51.6.527
  7. Dielectric, ac-impedance and modulus spectroscopic studies of nano-crystalline Bi0.5Na0.5TiO3 synthesized by using one pot glycine assisted solution combustion from inexpensive TiO2 vol.26, pp.2, 2012, https://doi.org/10.1007/s10854-014-2477-y
  8. Effect of Nb Doping on the Dielectric and Strain Properties of Lead-free 0.94(Bi1/2Na1/2)TiO3-0.06BaTiO3 Ceramics vol.53, pp.2, 2012, https://doi.org/10.4191/kcers.2016.53.2.145
  9. Structural and electrical properties of Bi1/2Na1/2TiO3–BaTiO3–Sr3CuNb2O9 lead-free piezoelectric ceramics vol.28, pp.1, 2012, https://doi.org/10.1007/s10854-016-5493-2
  10. Fabrication of Lead-free (K0.5Na0.5)1−xAg x NbO3 Ferroelectric Ceramics and Their Dielectric Properties vol.72, pp.6, 2012, https://doi.org/10.3938/jkps.72.726
  11. The effect of B site doping of Nb5+ and aging process on the properties of BNKT-BT lead-free piezoelectric ceramics vol.48, pp.2, 2022, https://doi.org/10.1016/j.ceramint.2021.10.015