DOI QR코드

DOI QR Code

Measurement of Scintillation Responses of Scintillation Fibers for Dose Verification in Proton Therapy

  • Kim, C. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Hong, B. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Jhang, G. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Joo, E. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Lee, K.S. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Lee, K.S. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Lee, S. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Lee, S.K. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Park, S.K. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Shim, H.H. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Shin, S.S. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Sim, K.S. (Department of Physics and Korea Detector Laboratory, Korea University) ;
  • Cha, H.K. (Korea Atomic Energy Research Institute)
  • Published : 2012.03.15

Abstract

Here, we report on the measurement of scintillation responses of scintillation fibers for precision dose verification in proton therapy. A detector equipped with two layers of 1-mm-thick scintillation fibers and 46-channel silicon photodiodes was constructed and tested with 45-MeV proton beams provided by the MC50 proton cyclotron at the Korea Institute of Radiological and Medical Science (KIRAMS). Scintillation responses of the detector for the protons were measured as a function of depth in an absorber made of PMMA (poly methyl methacrylate) and PET (polyester) films whose thicknesses varied from 0.148 to $2.0g{\cdot}cm^{-2}$. Quenching of the scintillation responses of the detector was evaluated by comparison of the data to the specific energy loss predicted by GEANT4-based simulations. The first-order parameter of the Birks model, ${\kappa}B$, for scintillation fibers, as derived from the ratios of specific energy losses to scintillation responses, was $(2.38{\pm}0.17){\times}10^{-2}$.

Keywords

References

  1. W. Wagner, M. Seidel, E. Morenzoni, F. Groeschel, M. Wohlmuther and M. Daum, Nucl. Instrum. Methods Phys. Res., Sect. A 5, 600 (2009)
  2. T. Bortfeld, Phys. Med. Biol. 51, R363 (2006). https://doi.org/10.1088/0031-9155/51/13/R21
  3. M. Kramer, O. Haberer, G. Kraft, D. Schardt and U.Weber, Phys. Med. Biol. 45, 3299 (2000) https://doi.org/10.1088/0031-9155/45/11/313
  4. B. Schaffner, E. Pedroni and A. Lomax, Phys. Med. Biol. 44, 27 (1999). https://doi.org/10.1088/0031-9155/44/1/004
  5. H. Paganetti, H. Jiang, K. Parodi, R. Slopsema and M. Engelsman, Phys. Med. Biol. 53, 4825 (2008) https://doi.org/10.1088/0031-9155/53/17/023
  6. A. J. Lomax et al., Med. Phys. 31, 3105 (2004).
  7. W. Newhauser, J. Fontenot, N. Koch, L. Dong, A. Lee, Y. Zheng, L. Waters and R. Mohan, Phys. Med. Biol. 52, 2937 (2007). https://doi.org/10.1088/0031-9155/52/11/001
  8. T. Inaniwa, T. Furukawa, S. Sato, T. Tomitani, M. Kobayashi, S. Minohara, K. Noda and T. Kanai, Nucl. Instrum. Methods Phys. Res., Sect. B 266, 2194 (2007)
  9. K. Nada et al., J. Radiat. Res. Suppl 48, A43 (2007). https://doi.org/10.1269/jrr.48.A43
  10. Y. Futami, T. Kanai, M. Fujita, H. Tomura, A. Higashi, N. Matsufuji, N. Miyahara, M. Endo and K. Kawachi, Nucl. Instrum. Methods Phys. Res., Sect. A 430, 143 (1999). https://doi.org/10.1016/S0168-9002(99)00194-1
  11. The standard composition ratios of the constituent elements of soft tissue are found at http://pdg.lbl.gov/ 2009/AtomicNuclearProperties/.
  12. B. S. Moon, B. Hong, J. Jang, M. S. Jeong, M. Jo, E. A. Ju, K. S. Lee, S. Park and K. S. Sim, J. Korean Phys. Soc. 56, 1088 (2010). https://doi.org/10.3938/jkps.56.1088
  13. J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006) https://doi.org/10.1109/TNS.2006.869826
  14. S. Agostinelli, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). https://doi.org/10.1016/S0168-9002(03)01368-8
  15. C. Kim, B. Hong, R. J. Hu, M. Jo, K. S. Lee, S. Park and K. S. Sim, J. Korean Phys. Soc. 54, 2133 (2009). https://doi.org/10.3938/jkps.54.2133
  16. C. Kim, B. Hong, M. Jo, K. S. Lee and K. S. Sim, Nucl. Instrum. Methods Phys. Res., Sect. A 609, 276 (2009). https://doi.org/10.1016/j.nima.2009.08.058
  17. M. Hirschberg, R. Beckmann, U. Brandenburg, H. Bruckmann and K. Wick, IEEE Trans. Nucl. Sci. 39, 511 (1992). https://doi.org/10.1109/23.159657
  18. L. Archambault, J. C. Polf, L. Beaulieu and S. Beddar, Phys. Med. Biol. 53, 1865 (2008). https://doi.org/10.1088/0031-9155/53/7/004

Cited by

  1. Development of thin gaseous ionization detectors for measurements of high-energy hadron beams vol.64, pp.7, 2012, https://doi.org/10.3938/jkps.64.958
  2. Radiation tests for a single-GEM-loaded gaseous detector vol.65, pp.9, 2014, https://doi.org/10.3938/jkps.65.1367