DOI QR코드

DOI QR Code

Effect of Silicon-nanoparticle Addition on the Nanostructure of Polythiophene: Fullurene Bulk Heterojunction Solar Cells

  • Kim, Joonhyeon (Organic Nanoelectronics Laboratory, Department of Chemical Engineering, Kyungpook National University) ;
  • Nam, Sungho (Organic Nanoelectronics Laboratory, Department of Chemical Engineering, Kyungpook National University) ;
  • Jeong, Jaehoon (Organic Nanoelectronics Laboratory, Department of Chemical Engineering, Kyungpook National University) ;
  • Kim, Hwajeong (Organic Nanoelectronics Laboratory, Department of Chemical Engineering, Kyungpook National University) ;
  • Kim, Youngkyoo (Organic Nanoelectronics Laboratory, Department of Chemical Engineering, Kyungpook National University)
  • Published : 2012.07.31

Abstract

We investigated the nanostructure change in bulk heterojunction films of poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)$C_{61}$ (PCBM) before and after adding silicon nanoparticles (SiNP) by employing synchrotron radiation grazing incidence-angle X-ray diffraction (GIXD) techniques. The GIXD results showed a gradual reduction of the P3HT (100) diffraction intensity in the out-of-plane (OOP) direction as the SiNP content was increased. Interestingly, a (100) intensity in the in-plane (IP) direction newly appeared when a small amount of SiNP was added, but it faded at higher SiNP contents. In particular, the addition of 2 wt.% SiNP increased the (100) intensity in both the OOP and the IP directions, leading to improved solar cell performance due to enhanced charge transport in the P3HT domains.

Keywords

References

  1. N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science 27, 1474 (1992).
  2. J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti and A. B. Holmes, Nature 376, 498 (1995). https://doi.org/10.1038/376498a0
  3. S. Gunes, H. Neugebauer and N. S. Sariciftci, Chem. Rev. 107, 1324 (2007). https://doi.org/10.1021/cr050149z
  4. M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, Adv. Mater. 18, 789 (2006). https://doi.org/10.1002/adma.200501717
  5. F. C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2008).
  6. M. A. Green, K. Emery, Y. Hishikawa and W. Warta, Prog. Photovoltaics 19, 84 (2011). https://doi.org/10.1002/pip.1088
  7. S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, Appl. Phys. Lett. 78, 841 (2001). https://doi.org/10.1063/1.1345834
  8. F. Padinger, R. S. Rittberger and N. S. Sariciftci, Adv. Funct. Mater. 13, 85 (2003). https://doi.org/10.1002/adfm.200390011
  9. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook and J. R. Durrant, J. Mater. Sci. 40, 1371 (2005). https://doi.org/10.1007/s10853-005-0568-0
  10. Y. Kim, S. A. Choulis, J. Nelson, D. D. C. Bradley, S. Cook and J. R. Durrant, Appl. Phys. Lett. 86, 063502 (2005). https://doi.org/10.1063/1.1861123
  11. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat. Mater. 4, 864 (2005). https://doi.org/10.1038/nmat1500
  12. M. Reyes-Reyes, K. Kim and D. L. Carroll, Appl. Phys. Lett. 87, 083506 (2005). https://doi.org/10.1063/1.2006986
  13. W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, Adv. Funct. Mater. 87, 1617 (2005).
  14. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mc-Culloch, C. S. Ha and M. H. Ree, Nat. Mater. 5, 197 (2006). https://doi.org/10.1038/nmat1574
  15. H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, Nat. Photoncis 3, 649 (2009). https://doi.org/10.1038/nphoton.2009.192
  16. Y. Kim, J. Nelson, T. Zhang, S. Cook, J. R. Durrant, H. Kim, J. Park, M. Shin, S. Nam, M. Heeney, I. McCulloch, C. S. Ha and D. D. C. Bradley, ACS Nano 3, 2557 (2009). https://doi.org/10.1021/nn900798m
  17. M. Shin, H. Kim, J. Park, S. Nam, K. Heo, M. Ree, C. S. Ha and Y. Kim, Adv. Funct. Mater. 20, 748 (2010). https://doi.org/10.1002/adfm.200901655
  18. H. Kim, M. Shin, J. Park and Y. Kim, IEEE Trans. Nanotechnol. 9, 400 (2010).
  19. H. Kim, M. Shin, J. Park and Y. Kim, Chem. Sus. Chem. 3, 476 (2010). https://doi.org/10.1002/cssc.200900291
  20. S. Nam, M. Shin, H. Kim and Y. Kim, Nanoscale 2, 2384 (2010). https://doi.org/10.1039/c0nr00379d
  21. S. Nam, M. Shin, H. Kim, C. S. Ha, M. Ree and Y. Kim, Adv. Funct. Mater. 21, 4527 (2011). https://doi.org/10.1002/adfm.201101215

Cited by

  1. Improved Photovoltaic Performance of MEH-PPV/PCBM Solar Cells via Incorporation of Si Nanocrystals vol.31, pp.11, 2013, https://doi.org/10.1002/cjoc.201300303
  2. Hybrid Phototransistors Based on Bulk Heterojunction Films of Poly(3-hexylthiophene) and Zinc Oxide Nanoparticle vol.5, pp.4, 2012, https://doi.org/10.1021/am302765a
  3. Influence of the Thickness and Doping Concentration in p- and n-Type Poly-Si Layers on the Efficiency of a Solar Cell Based on a Carbon Fiber vol.19, pp.2, 2015, https://doi.org/10.3807/josk.2015.19.2.199
  4. Electronic processes in organic-inorganic composite P3HT with silicon nanocrystals vol.118, pp.18, 2012, https://doi.org/10.1063/5.0046917