DOI QR코드

DOI QR Code

Low-temperature Sintering of Lead-free $Bi_{1/2}(Na,K)_{1/2}TiO_3-based$ Electrostrictive Ceramics with CuO Addition

  • Kang, Jin-Kyu (School of Materials Science and Engineering, University of Ulsan) ;
  • Heo, Dae-Jun (School of Materials Science and Engineering, University of Ulsan) ;
  • Nguyen, Van Quyet (School of Materials Science and Engineering, University of Ulsan) ;
  • Han, Hyoung-Su (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan) ;
  • Ahn, Kyoung-Kwan (School of Mechanical Engineering, University of Ulsan)
  • Published : 2012.09.28

Abstract

This study investigated low-temperature sintering of $(Bi_{1/2}Na_{1/2})TiO_3-based$ electrostrictive ceramics by employing CuO as a sintering aid. Ceramic specimens with a composition of $0.96Bi_{1/2}-(Na_{0.82}K_{0.18})_{1/2}TiO_3-0.04BaZrO_3$ were prepared using a conventional solid-state reaction route. Without CuO, specimens required sintering temperatures $(T_s)$ over $1175^{\circ}C$ for sufficient densification while the addition of 0.02-mol CuO in excess decreased the $T_s$ down to $1100^{\circ}C$. A normalized strain, $S_{max}/E_{max}$, of 363 pm/V was obtained for a CuO-added specimen after sintering at $1100^{\circ}C$, which was better than that of a high-temperature fired specimen sintered at $1175^{\circ}C$ without CuO (333 pm/V). The CuO-added specimen showed a high electrostrictive constant, $Q_{33}$, of $0.023m^{4}C^{-2}$, comparable to that of the $Pb(Mg_{1/3}Nb_{2/3})O_3$ (PMN) ceramic, which is believed to open a new road for the realization of low cost lead-free ceramic actuators.

Keywords

References

  1. K. Uchino, J. Electroceram. 20, 301 (2008). https://doi.org/10.1007/s10832-007-9196-1
  2. M. S. Choi, H. S. Han, Y. M. Kong, S. J. Kim, I. W. Kim, M. S. Kim, S. J. Jeong and J. S. Lee, Sens. Actuators, A 154, 97 (2009). https://doi.org/10.1016/j.sna.2009.06.003
  3. I. Y. Kang, Y. J. Cha, J. H. Choi, S. Nahm, T. H. Sung and H. C. Jung, J. Eur. Ceram. Soc. 32, 1085 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.11.020
  4. H. S. Han, E. C. Park, J. I. Yoon, K. K. Ahn and J. S. Lee, Trans. Electr. Electron. Mater. 12, 249 (2011). https://doi.org/10.4313/TEEM.2011.12.6.249
  5. S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg and J. Rodel, Appl. Phys. Lett. 91, 112906 (2007). https://doi.org/10.1063/1.2783200
  6. K. N. Pham, H. B. Lee, H. S. Han, J. K. Kang, J. S. Lee, A. Ullah, C. W. Ahn and l. W. Kim, J. Korean. Phys. Soc. 60, 207 (2012). https://doi.org/10.3938/jkps.60.207
  7. V. Q. Nguyen, H. S. Han, K. J. Kim, D. D. Dang, K. K. Ahn and J. S. Lee, J. Alloys. Compd. 511, 237 (2012). https://doi.org/10.1016/j.jallcom.2011.09.043
  8. K. T. P. Seifert, W. Jo and J. Rodel, J. Am. Ceram. Soc. 93, 1392 (2010).
  9. V. D. N. Tran, H. S. Han, C. H. Yoon, J. S. Lee, W. Jo and J. Rodel, Mater. Lett. 65, 2607 (2011). https://doi.org/10.1016/j.matlet.2011.05.059
  10. H. Y. Park, I. T. Seo, J. H. Choi, S. Nahm and H. G. Lee, J. Am. Ceram. Soc. 93, 36 (2010). https://doi.org/10.1111/j.1551-2916.2009.03359.x
  11. S. H. Lee, S. P. Nam, S. C. Lee and S. G. Lee, J. Ceram. Process. Res. 12, 195 (2011).
  12. W. Jo et al., J. Eur. Ceram. Soc. 31, 2107 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.05.008
  13. M. Ehmke, J. Glaum, W. Jo, T. Granzow and J. Rodel, J. Am. Ceram. Soc. 94, 2473 (2011). https://doi.org/10.1111/j.1551-2916.2010.04379.x
  14. C. S. Chou, C. L. Liu and C. M. Hsiung, Powder Technol. 210, 212 (2011). https://doi.org/10.1016/j.powtec.2011.03.019
  15. N. B. Do, H. D. Jang, I. K. Hong, H. S. Han, D. T. Le, W. P. Tai and J. S. Lee, Ceram. Int. 38, 359 (2012). https://doi.org/10.1016/j.ceramint.2011.05.012
  16. Y. S. Sung, J. M. Kim, J. H. Cho, T. K. Song, M. H. Kim, H. H. Chong, T. G. Park, D. Do and S. S. Kim, Appl. Phys. Lett. 96, 022901 (2010). https://doi.org/10.1063/1.3275704
  17. Y. S. Sung, J. M. Kim, J. H. Cho, T. K. Song, M. H. Kim and T. G. Park, Appl. Phys. Lett. 98, 012902 (2011). https://doi.org/10.1063/1.3525370
  18. V. D. Ngoc, Ph.D. dissertation, University of Ulsan, 2012.
  19. H. S. Han, N. B. Do, K. N. Pham, H. D. Jang, V. D. N. Tran, W. P. Tai and J. S. Lee, Ferroelectrics 421, 88 (2011). https://doi.org/10.1080/00150193.2011.594733
  20. R. Dittmer, W. Jo, J. Daniels, S. Schaab and J. Rodel, J. Am. Ceram. Soc. 94, 4283 (2011). https://doi.org/10.1111/j.1551-2916.2011.04631.x
  21. S. T. Zhang , A. B. Kounga, W. Jo, C. Jamin, K. T. P. Seifert, T. Granzow, J. Rodel and D. Damjanovic, Adv. Mater. 21, 4716 (2009). https://doi.org/10.1002/adma.200901516
  22. K. Uchino, S. Nomura, L. E. Cross, S. J. Jang and R. E. Newnahm, J. Appl. Phys. 51, 1142 (1980). https://doi.org/10.1063/1.327724

Cited by

  1. Current Development in Lead-FreeBi0.5(Na,K)0.5TiO3-Based Piezoelectric Materials vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/365391
  2. 마이크로파 소결법을 이용한 Bi0.5Na0.5TiO3계 적층형 세라믹 액추에이터 제조 vol.27, pp.11, 2012, https://doi.org/10.4313/jkem.2014.27.11.702
  3. Comparative Study of Conventional and Microwave Sintering of Large Strain Bi-Based Perovskite Ceramics vol.18, pp.1, 2017, https://doi.org/10.4313/teem.2017.18.1.1