DOI QR코드

DOI QR Code

$MgB_2$ coated superconducting tapes with high critical current densities fabricated by hybrid physicalechemical vapor deposition

  • Ranot, Mahipal (BK21 Physics Division and Department of Physics, Sungkyunkwan University) ;
  • Kang, W.N. (BK21 Physics Division and Department of Physics, Sungkyunkwan University)
  • Published : 2012.03.31

Abstract

The $MgB_2$ coated superconducting tapes have been fabricated on textured Cu (0 0 1) and polycrystalline Hastelloy tapes using coated conductor technique, which has been developed for the second generation high temperature superconducting wires. The $MgB_2$/Cu tapes were fabricated over a wide temperature range of $460-520^{\circ}C$ by using hybrid physicalechemical vapor deposition (HPCVD) technique. The tapes exhibited the critical temperatures (Tc) ranging between 36 and 38 K with superconducting transition width (${\Delta}Tc$) of about 0.3e0.6 K. The highest critical current density (Jc) of $1.34{\times}10^5\;A/cm^2$ at 5 K under 3 T is obtained for the MgB2/Cu tape grown at $460^{\circ}C$. To further improve the flux pinning property of $MgB_2$ tapes, SiC is coated as an impurity layer on the Cu tape. In contrast to pure$MgB_2$/Cu tapes, the $MgB_2$ on SiC-coated Cu tapes exhibited opposite trend in the dependence of Jc with growth temperature. The improved flux pinning by the additional defects created by SiC-impurity layer along with the $MgB_2$ grain boundaries lead to strong improvement in Jc for the $MgB_2$/SiC/Cu tapes. The MgB2/Hastelloy superconducting tapes fabricated at a temperature of $520^{\circ}C$ showed the critical temperatures ranging between 38.5 and 39.6 K. We obtained much higher Jc values over the wide field range for MgB2/Hastelloy tapes than the previously reported data on other metallic substrates, such as Cu, SS, and Nb. The Jc values of Jc(20 K, 0 T) ~$5.8{\times}10^6\;A/cm^2$ and Jc(20 K, 1.5 T) ~$2.4{\times}10^5\;A/cm^2$ is obtained for the 2-${\mu}m$-thick $MgB_2$/Hastelloy tape. This paper will review the merits of coated conductor approach along with the HPCVD technique to fabricate $MgB_2$ conductors with high Tc and Jc values which are useful for large scale applications.

Keywords

References

  1. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature (London) 410 (2001) 63. https://doi.org/10.1038/35065039
  2. W.N. Kang, H.J. Kim, E.M. Choi, C.U. Jung, S.I. Lee, Science 292 (2001) 1521. https://doi.org/10.1126/science.1060822
  3. D.C. Larbalestier, et al., Nature 410 (2001) 186. https://doi.org/10.1038/35065559
  4. W.N. Kang, H.J. Kim, E.M. Choi, H.J. Kim, K.H.P. Kim, H.S. Lee, S.I. Lee, Phys. Rev. B 65 (2002) 134508.
  5. D. Larbalestier, A. Gurevich, D.M. Feldmann, A. Polyanskii, Nature (London) 414 (2001) 368. https://doi.org/10.1038/35104654
  6. C. Buzea, T. Yamashita, Supercond. Sci. Technol. 14 (2001) R115. https://doi.org/10.1088/0953-2048/14/11/201
  7. K. Vinod, R.G.A. Kumar, U. Syamaprasad, Supercond. Sci. Technol. 20 (2007) R1. https://doi.org/10.1088/0953-2048/20/1/R01
  8. R. Flukiger, H.L. Suo, N. Musolino, C. Beneduce, P. Toulemonde, P. Lezza, Phys. C 385 (2003) 286. https://doi.org/10.1016/S0921-4534(02)02307-9
  9. M.J. Holcomb, Phys. C 423 (2005) 103. https://doi.org/10.1016/j.physc.2005.04.007
  10. H. Kumakura, A. Matsumoto, T. Nakane, H. Kitaguchi, Phys. C 456 (2007) 196. https://doi.org/10.1016/j.physc.2006.12.017
  11. M. Tomsic, M. Rindfleisch, J. Yue, K. McFadden, D. Doll, J. Phillips, M.D. Sumption, M. Bhatia, S. Bohnenstiehl, E.W. Collings, Phys. C 456 (2007) 203. https://doi.org/10.1016/j.physc.2007.01.009
  12. V. Braccini, D. Nardelli, R. Penco, G. Grasso, Phys. C 456 (2007) 209. https://doi.org/10.1016/j.physc.2007.01.030
  13. J.M. Rowell, Supercond. Sci. Technol. 16 (2003) R17. https://doi.org/10.1088/0953-2048/16/6/201
  14. A. Matsumoto, H. Kumakura, H. Kitaguchi, B.J. Senkowicz, M.C. Jewell, E.E. Hellstrom, Y. Zhu, P.M. Voyles, D.C. Larbalestier, Appl. Phys. Lett. 89 (2006) 132508. https://doi.org/10.1063/1.2357027
  15. H.J. Kim, W.N. Kang, E.M. Choi, M.S. Kim, Kijoon H.P. Kim, S.I. Lee, Phys. Rev. Lett. 87 (2001) 087002.
  16. C.B. Eom, et al., Nature 411 (2001) 558. https://doi.org/10.1038/35079018
  17. M. Paranthaman, et al., Appl. Phys. Lett. 78 (2001) 3669. https://doi.org/10.1063/1.1377323
  18. K. Komori, K. Kawagishi, Y. Takano, H. Fujii, S. Arisawa, H. Kumakura, M. Fukutomi, K. Togano, Appl. Phys. Lett. 81 (2002) 1047. https://doi.org/10.1063/1.1495087
  19. J.D. Xu, S.F. Wang, Y.B. Zhou, Y.L. Zhou, Z.H. Chen, D.F. Cui, H.B. Lu, M. He, S.Y. Dai, G.Z. Yang, Supercond. Sci. Technol. 15 (2002) 1190. https://doi.org/10.1088/0953-2048/15/8/303
  20. B.A. Glowacki, M. Majoros, M. Vickers, M. Eisterer, S. Toenies, H.W. Weber, M. Fukutomi, K. Komori, K. Togano, Supercond. Sci. Technol. 16 (2003) 297. https://doi.org/10.1088/0953-2048/16/2/330
  21. V. Ferrando, et al., Appl. Phys. Lett. 87 (2005) 252509. https://doi.org/10.1063/1.2149289
  22. H. Abe, K. Nishida, M. Imai, H. Kitazawa, K. Yoshii, Appl. Phys. Lett. 85 (2004) 6197. https://doi.org/10.1063/1.1839644
  23. K. Masuda, T. Doi, K. Fukuyama, S. Hamada, Y. Hakuraku, H. Kitaguchi, IEEE Trans. Appl. Supercond. 17 (2007) 2895.
  24. P.C. Canfield, D.K. Finnemore, S.L. Budko, J.E. Ostenson, G. Lapertot, C.E. Cunningham, C. Petrovic, Phys. Rev. Lett. 86 (2001) 2423. https://doi.org/10.1103/PhysRevLett.86.2423
  25. J.D. DeFouw, D.C. Dunand, Appl. Phys. Lett. 83 (2003) 120. https://doi.org/10.1063/1.1591243
  26. K. Togano, T. Nakane, H. Fujii, H. Takeya, H. Kumakura, Supercond. Sci. Technol. 19 (2006) L17. https://doi.org/10.1088/0953-2048/19/6/L01
  27. G. Grasso, A. Malagoli, C. Ferdeghini, S. Roncallo, V. Braccini, A.S. Siri, Appl. Phys. Lett. 79 (2001) 230. https://doi.org/10.1063/1.1384905
  28. H. Kumakura, A. Matsumoto, H. Fujii, K. Togano, Appl. Phys. Lett. 79 (2001) 2435. https://doi.org/10.1063/1.1407856
  29. C.H. Jiang, T. Nakane, H. Kumakura, Appl. Phys. Lett. 87 (2005) 252505. https://doi.org/10.1063/1.2149976
  30. O. Perner, J. Eckert, W. HaBler, C. Fischer, J. Acker, T. Gemming, G. Fuchs, B. Holzapfel, L. Schultz, J. Appl. Phys. 97 (2005) 056105. https://doi.org/10.1063/1.1861142
  31. S.K. Chen, K.A. Yates, M.G. Blamire, J.L. MacManus-Driscoll, Supercond. Sci. Technol. 18 (2005) 1473. https://doi.org/10.1088/0953-2048/18/11/011
  32. X. Xu, M.J. Qin, K. Konstantinov, D.I. Santos, W.K. Yeoh, J.H. Kim, S.X. Dou, Supercond. Sci. Technol. 19 (2006) 466. https://doi.org/10.1088/0953-2048/19/6/009
  33. J. Jiang, B.J. Senkowicz, D.C. Larbalestier, E.E. Hellstrom, Supercond. Sci. Technol. 19 (2006) L33. https://doi.org/10.1088/0953-2048/19/8/L02
  34. H.L. Suo, C. Beneduce, M. Dhall, N. Musolino, J.Y. Genoud, R. Flukiger, Appl. Phys. Lett. 79 (2001) 3116. https://doi.org/10.1063/1.1415349
  35. H. Yamadaa, M. Hirakawa, H. Kumakura, A. Matsumoto, H. Kitaguchi, Appl. Phys. Lett. 84 (2004) 1728. https://doi.org/10.1063/1.1667263
  36. M.J. Qin, S. Keshavarzi, S. Soltanian, X.L. Wang, H.K. Liu, S.X. Dou, Phys. Rev. B 69 (2004) 012507.
  37. C.F. Liu, G. Yan, S.J. Du, W. Xi, Y. Feng, P.X. Zhang, X.Z. Wu, L. Zhou, Phys. C 386 (2003) 603.
  38. H. Fang, Y.Y. Xue, Y.X. Zhou, A. Baikalov, K. Salama, Supercond. Sci. Technol. 17 (2004) L27. https://doi.org/10.1088/0953-2048/17/7/L01
  39. A. Serquis, L. Civale, D.L. Hammon, J.Y. Coulter, X.Z. Liao, Y.T. Zhu, D.E. Peterson, F.M. Mueller, Appl. Phys. Lett. 82 (2003) 1754. https://doi.org/10.1063/1.1561572
  40. A. Serquis, L. Civale, D.L. Hammon, X.Z. Liao, J.Y. Coulter, Y.T. Zhu, D.E. Peterson, F.M. Mueller, J. Appl. Phys. 94 (2003) 4024. https://doi.org/10.1063/1.1603347
  41. S.K. Chen, K.S. Tan, B.A. Glowacki, W.K. Yeoh, S. Soltanian, J. Horvat, S.X. Dou, Appl. Phys. Lett. 87 (2005) 182504. https://doi.org/10.1063/1.2126148
  42. M. Kiuchi, K. Yamauchi, T. Kurokawa, E.S. Otabe, T. Matsushita, M. Okada, K. Tanaka, H. Kumakura, H. Kitaguchi, Phys. C 412 (2004) 1189.
  43. T. Nakane, H. Kitaguchi, H. Kumakura, Appl. Phys. Lett. 88 (2006) 022513. https://doi.org/10.1063/1.2163498
  44. W.K. Yeoh, S.X. Dou, Phys. C 456 (2007) 170. https://doi.org/10.1016/j.physc.2007.01.024
  45. M.A. Susner, M.D. Sumption, M. Bhatia, X. Peng, M.J. Tomsic, M.A. Rindfleisch, E.W. Collings, Phys. C 456 (2007) 180. https://doi.org/10.1016/j.physc.2007.02.005
  46. Y. Iijima, N. Tanabe, O. Kohno, Y. Ikeno, Appl. Phys. Lett. 60 (1992) 769. https://doi.org/10.1063/1.106514
  47. D. Dimos, P. Chaudhari, J. Mannhart, Phys. Rev. B 41 (1990) 4038. https://doi.org/10.1103/PhysRevB.41.4038
  48. S.R. Foltyn, L. Civale, J.L. MacManus-Driscoll, Q.X. Jia, B. Maiorov, H. Wang, M. Maley, Nat. Mater. 6 (2007) 631. https://doi.org/10.1038/nmat1989
  49. Y. Iwasa, D.C. Larbalestier, M. Okada, R. Penco, M.D. Sumption, X. Xi, IEEE Trans. Appl. Supercond. 16 (2006) 1457. https://doi.org/10.1109/TASC.2006.873235
  50. K. Ueda, M. Naito, Appl. Phys. Lett. 79 (2001) 2046. https://doi.org/10.1063/1.1405421
  51. A.J.M. Van Erven, T.H. Kim, M. Muenzenberg, J.S. Moodera, Appl. Phys. Lett. 81 (2002) 4982. https://doi.org/10.1063/1.1530732
  52. T.H. Kim, J. Kor, Phys. Soc. 49 (2006) L1881.
  53. H.Y. Zhai, H.M. Christen, L. Zhang, C. Cantoni, M. Paranthaman, B.C. Sales, D.K. Christen, D.H. Lowndes, Appl. Phys. Lett. 79 (2001) 2603. https://doi.org/10.1063/1.1410360
  54. A. Brinkman, et al., Phys. C 353 (2001) 1. https://doi.org/10.1016/S0921-4534(01)00396-3
  55. D. Mijatovic, A. Brinkman, G. Rijnders, H. Hilgenkamp, H. Rogalla, D.H.A. Blank, Phys. C 372 (2002) 1258.
  56. X.H. Zeng, A.V. Pogrebnyakov, A. Kotcharov, J.E. Jones, X.X. Xi, E.M. Lysczek, J.M. Redwing, S.Y. Xu, Q. Li, J. Lettieri, D.G. Schlom, W. Tian, X. Pan, Z.K. Liu, Nat. Mater. 1 (2002) 35. https://doi.org/10.1038/nmat703
  57. W.K. Seong, J.Y. Huh, W.N. Kang, J.-W. Kim, Y.-S. Kwon, N.-K. Yang, J.-G. Park, Chem. Vapor Depos. 13 (2007) 680. https://doi.org/10.1002/cvde.200706636
  58. X.X. Xi, et al., Phys. C 456 (2007) 22. https://doi.org/10.1016/j.physc.2007.01.029
  59. M. Okuzono, T. Doi, Y. Ishizaki, Y. Kobayashi, Y. Hakuraku, H. Kitaguchi, IEEE Trans. Appl. Supercond. 15 (2005) 3253. https://doi.org/10.1109/TASC.2005.848845
  60. H. Kitaguchi, A. Matsumoto, H. Kumakura, T. Doi, H. Yamamoto, K. Saitoh, H. Sosiati, S. Hata, Appl. Phys. Lett. 85 (2004) 2842. https://doi.org/10.1063/1.1805195
  61. M. Haruta, T. Fujiyoshi, T. Sueyoshi, K. Miyahara, T. Doi, H. Kitaguchi, S. Awaji, K. Watanabe, Supercond. Sci. Technol. 18 (2005) 1460. https://doi.org/10.1088/0953-2048/18/11/008
  62. B.H. Moeckly, W.S. Ruby, Supercond. Sci. Technol. 19 (2006) L21. https://doi.org/10.1088/0953-2048/19/6/L02
  63. E. Monticone, C. Gandini, C. Portesi, M. Rajteri, S. Bodoardo, N. Penazzi, V. Dellarocca, R.S. Gonnelli, Supercond. Sci. Technol. 17 (2004) 649. https://doi.org/10.1088/0953-2048/17/4/014
  64. J. Rowell, Nat. Mater. 1 (2002) 5. https://doi.org/10.1038/nmat713
  65. H. Fujii, H. Kumakura, K. Togano, Phys. C 363 (2001) 237. https://doi.org/10.1016/S0921-4534(01)01094-2
  66. S. Hata, T. Yoshidome, H. Sosiati, Y. Tomokiyo, N. Kuwano, A. Matsumoto, H. Kitaguchi, H. Kumakura, Supercond. Sci. Technol. 19 (2006) 161. https://doi.org/10.1088/0953-2048/19/2/002
  67. X.H. Zeng, et al., Appl. Phys. Lett. 82 (2003) 2097. https://doi.org/10.1063/1.1563840
  68. W.K. Seong, W.N. Kang, Phys. C 468 (2008) 1884. https://doi.org/10.1016/j.physc.2008.05.110
  69. C.G. Zhuang, S. Meng, C.Y. Zhang, Q.R. Feng, Z.Z. Gan, H. Yang, Y. Jia, H.H. Wen, X.X. Xi, J. Appl. Phys. 104 (2008) 013924. https://doi.org/10.1063/1.2952052
  70. J. Chen, et al., Phys. Rev. B 74 (2006) 174511.
  71. V. Braccini, et al., Phys. Rev. B 71 (2005) 012504.
  72. L.-P. Chen, et al., Chin. Phys. Lett. 24 (2007) 2074. https://doi.org/10.1088/0256-307X/24/7/079
  73. F. Li, T. Guo, K. Zhang, C. Chen, Q. Feng, Phys. C 452 (2007) 6. https://doi.org/10.1016/j.physc.2006.11.008
  74. C. Zhuang, D. Yao, F. Li, K. Zhang, Q. Feng, Z. Gan, Supercond. Sci. Technol. 20 (2007) 287. https://doi.org/10.1088/0953-2048/20/3/030
  75. A.V. Pogrebnyakov, E. Maertz, R.H.T. Wilke, Qi Li, A. Soukiassian, D.G. Schlom, J.M. Redwing, A. Findikoglu, X.X. Xi, IEEE Trans. Appl. Supercond. 17 (2007) 2854.
  76. B.A. Glowacki, M. Majoros, M.E. Vickers, J.E. Evetts, Y. Shi, I. McDougall, Supercond. Sci. Technol. 14 (2001) 193. https://doi.org/10.1088/0953-2048/14/4/304
  77. B.A. Glowacki, M. Majoros, M.E. Vickers, B. Zeimetz, Phys. C 372 (2002) 1254.
  78. S. Soltanian, X.L. Wang, J. Horvat, A.H. Li, H.K. Liu, S.X. Dou, Phys. C 382 (2000) 187.
  79. S. Zhou, A.V. Pan, M. Ionescu, H. Liu, S. Dou, Supercond. Sci. Technol. 15 (2002) 236. https://doi.org/10.1088/0953-2048/15/2/310
  80. E. Martinez, L.A. Angurel, R. Navarro, Supercond. Sci. Technol. 15 (2002) 1043. https://doi.org/10.1088/0953-2048/15/7/309
  81. N.M. Strickland, R.G. Buckley, A. Otto, Appl. Phys. Lett. 83 (2003) 326. https://doi.org/10.1063/1.1584785
  82. Z.Q. Ma, Y.C. Liu, Q.Z. Shi, Q. Zhao, Z.M. Gao, Supercond. Sci. Technol. 21 (2008) 065004. https://doi.org/10.1088/0953-2048/21/6/065004
  83. Q.W. Yao, X.L. Wang, S. Soltanian, A.H. Li, J. Horvat, S.X. Dou, Ceram. Int. 30 (2004) 1603. https://doi.org/10.1016/j.ceramint.2003.12.191
  84. F. Li, T. Guo, K. Zhang, L.-P. Chen, C. Chen, Q. Feng, Supercond. Sci. Technol. 19 (2006) 1196. https://doi.org/10.1088/0953-2048/19/11/018
  85. A. Goyal, et al., Appl. Phys. Lett. 69 (1996) 1795. https://doi.org/10.1063/1.117489
  86. E. Samuelsson, A. Mitchell, Metall. Trans. B 23B (1992) 805.
  87. Mahipal Ranot, W.K. Seong, Soon-Gil Jung, W.N. Kang, J. Korean Phys. Soc. 54 (2009) 2343. https://doi.org/10.3938/jkps.54.2343
  88. T.G. Lee, M. Ranot, W.K. Seong, S.-G. Jung, W.N. Kang, J.H. Joo, C.-J. Kim, B.- H. Jun, Y. Kim, Y. Zhao, S.X. Dou, Supercond. Sci. Technol. 22 (2009) 045006. https://doi.org/10.1088/0953-2048/22/4/045006
  89. C.J. Olson, F. Nori, Phys. C 363 (2001) 67. https://doi.org/10.1016/S0921-4534(01)00611-6
  90. M.Y. Kameneva, A.I. Romanenko, O.B. Anikeeva, N.V. Kuratieva, Phys. C 408 (2004) 816.
  91. Y. Bugoslavsky, L.F. Cohen, G.K. Perkins, M. Polichetti, T.J. Tate, R. Gwilliam, A.D. Caplin, Nature 411 (2001) 561. https://doi.org/10.1038/35079024
  92. M. Putti, et al., Appl. Phys. Lett. 86 (2005) 112503. https://doi.org/10.1063/1.1880450
  93. I. Pallecchi, et al., Phys. Rev. B 71 (2005) 212507.
  94. E.M. Choi, H.S. Lee, H. Kim, S.I. Lee, H.J. Kim, W.N. Kang, Appl. Phys. Lett. 84 (2004) 82. https://doi.org/10.1063/1.1637944
  95. Y. Zhao, C.H. Cheng, L. Zhou, Y. Wu, T. Machi, Y. Fudamoto, N. Koshizuka, M. Murakami, Appl. Phys. Lett. 79 (2001) 1154. https://doi.org/10.1063/1.1396629
  96. S.F. Wang, S.Y. Dai, Y.L. Zhou, Y.B. Zhu, Z.H. Chen, H.B. Lu, G.Z. Yang, J. Supercond. 17 (2004) 397.
  97. T. Takenobu, T. Ito, D.H. Chi, K. Prassides, Y. Iwasa, Phys. Rev. B 64 (2001) 134513.
  98. S.X. Dou, S. Soltanian, J. Horvat, X.L. Wang, S.H. Zhou, M. Ionescu, H.K. Liu, P. Munroe, M. Tomsic, Appl. Phys. Lett. 81 (2002) 3419. https://doi.org/10.1063/1.1517398
  99. K.S. Tan, S.K. Chen, B.-H. Jun, C.-J. Kim, Supercond. Sci. Technol. 21 (2008) 105013. https://doi.org/10.1088/0953-2048/21/10/105013
  100. A.V. Pogrebnyakov, et al., Appl. Phys. Lett. 85 (2004) 2017. https://doi.org/10.1063/1.1782258
  101. C.G. Zhuang, S. Meng, H. Yang, Y. Jia, H.H. Wen, X.X. Xi, Q.R. Feng, Z.Z. Gan, Supercond. Sci. Technol. 21 (2008) 082002. https://doi.org/10.1088/0953-2048/21/8/082002
  102. M. Ranot, W.K. Seong, S.-G. Jung, N.H. Lee, W.N. Kang, J.H. Joo, Y. Zhao, S.X. Dou, Phys. C 469 (2009) 1563. https://doi.org/10.1016/j.physc.2009.05.223
  103. M. Ranot, Soon-Gil Jung, W.K. Seong, N.H. Lee, W.N. Kang, J. Joo, C.-J. Kim, B.- H. Jun, S. Oh, Phys. C 470 (2010) S1000.
  104. T.J. Jackson, S.B. Palmer, J. Phys. D: Appl. Phys. 27 (1994) 1581. https://doi.org/10.1088/0022-3727/27/8/001
  105. S.-G. Jung, N.H. Lee, W.K. Seong, W.N. Kang, E.-M. Choi, S.-I. Lee, Supercond. Sci. Technol. 21 (2008) 085017. https://doi.org/10.1088/0953-2048/21/8/085017
  106. W.X. Li, R. Zeng, L. Lu, Y. Zhang, S.X. Dou, Y. Li, R.H. Chen, M.Y. Zhu, Phys. C 469 (2009) 1519. https://doi.org/10.1016/j.physc.2009.05.230
  107. W.X. Li, R. Zeng, L. Lu, S.X. Dou, J. Appl. Phys. 109 (2011) 07E108. https://doi.org/10.1063/1.3549590
  108. S.X. Dou, et al., Phys. Rev. Lett. 98 (2007) 097002.
  109. J.L. Wang, R. Zeng, J.H. Kim, L. Lu, S.X. Dou, Phys. Rev. B 77 (2008) 174501.
  110. A. Berenov, et al., J. Mater. Res. 18 (2003) 956. https://doi.org/10.1557/JMR.2003.0131
  111. S.-F. Wang, Z. Liu, Y.-L. Zhou, Y.-B. Zhu, Z.-H. Chen, H.-B. Lu, B.-L. Cheng, G.- Z. Yang, Supercond. Sci. Technol. 17 (2004) 1126. https://doi.org/10.1088/0953-2048/17/10/006
  112. M. Hanna, S. Wang, J.M. Redwing, X.X. Xi, K. Salama, Supercond. Sci. Technol. 22 (2009) 015024. https://doi.org/10.1088/0953-2048/22/1/015024
  113. M. Ranot, K. Cho, W.K. Seong, S. Oh, K.C. Chung, W.N. Kang, Phys. C 471 (2011) 582. https://doi.org/10.1016/j.physc.2011.07.004
  114. A.V. Pogrebnyakov, et al., Phys. Rev. Lett. 93 (2004) 147006.
  115. A.V. Pogrebnyakov, J.M. Redwing, J.E. Jones, X.X. Xi, S.Y. Xu, Qi Li, V. Vaithyanathan, D.G. Schlom, Appl. Phys. Lett. 82 (2003) 4319. https://doi.org/10.1063/1.1583852
  116. S.R. Foltyn, Q.X. Jia, P.N. Arendt, L. Kinder, Y. Fan, J.F. Smith, Appl. Phys. Lett. 75 (1999) 3692. https://doi.org/10.1063/1.125431

Cited by

  1. Thickness dependence of grain growth orientation in MgB2 films fabricated by hybrid physical-chemical vapor deposition vol.15, pp.2, 2012, https://doi.org/10.9714/psac.2013.15.2.009
  2. Significant enhancement of critical current density by effective carbon-doping in MgB2 thin films vol.15, pp.2, 2013, https://doi.org/10.9714/psac.2013.15.2.012
  3. Single-Crystal like MgB2 thin films grown on c-cut sapphire substrates vol.16, pp.3, 2012, https://doi.org/10.9714/psac.2014.16.3.007
  4. A review on the understanding and fabrication advancement of MgB2 thin and thick films by HPCVD vol.17, pp.2, 2012, https://doi.org/10.9714/psac.2015.17.2.001
  5. Addition effects of nanoscale NiO on microstructure and superconducting properties of MgB2 vol.18, pp.1, 2016, https://doi.org/10.9714/psac.2016.18.1.037
  6. A safe and cost-effective PMMA carbon source for MgB2 vol.19, pp.1, 2017, https://doi.org/10.9714/psac.2017.19.1.047
  7. Growth of magnesium diboride films on 2 inch diameter copper discs by hybrid physical–chemical vapor deposition vol.30, pp.4, 2012, https://doi.org/10.1088/1361-6668/aa5999
  8. Carbon-coated boron using low-cost naphthalene for substantial enhancement of Jc in MgB2 superconductor vol.19, pp.3, 2012, https://doi.org/10.9714/psac.2017.19.3.040
  9. New deposition method of MgB2 thin film with thermal evaporation of Mg and sputtering of B vol.7, pp.5, 2012, https://doi.org/10.1088/2053-1591/ab945a