DOI QR코드

DOI QR Code

Prompt gamma detection for range verification in proton therapy

  • Kurosawa, Shunsuke (Department of Physics, Graduate School of Science, Kyoto University) ;
  • Kubo, Hidetoshi (Department of Physics, Graduate School of Science, Kyoto University) ;
  • Ueno, Kazuki (Department of Physics, Graduate School of Science, Kyoto University) ;
  • Kabuki, Shigeto (Department of Physics, Graduate School of Science, Kyoto University) ;
  • Iwaki, Satoru (Department of Physics, Graduate School of Science, Kyoto University) ;
  • Takahashi, Michiaki (Department of Physics, Graduate School of Science, Kyoto University) ;
  • Taniue, Kojiro (Department of Physics, Graduate School of Science, Kyoto University) ;
  • Higashi, Naoki (Department of Physics, Graduate School of Science, Kyoto University) ;
  • Miuchi, Kentaro (Department of Physics, Graduate School of Science, Kyoto University) ;
  • Tanimori, Toru (Department of Physics, Graduate School of Science, Kyoto University) ;
  • Kim, Dogyun (Department of Physics, Seoul National University) ;
  • Kim, Jongwon (Department of Biomedical Engineering, National Cancer Center)
  • Published : 2012.03.31

Abstract

It is an on-going challenge to verify the proton range in situ during proton therapy. Since the protons stop in target tissue, measurement of gamma-rays emitted either promptly from nuclear de-excitation or in pair from positron annihilation is the feasible method to monitor the proton range in-vivo. Using the technique of gamma collimation, we empirically demonstrated that the proton range and prompt gamma distribution are well correlated in the therapy energy range, and that measuring prompt gammas is a viable method for the clinical application. However, this collimation technique appears not to be applicable to passively scattered proton beams. The device chosen for gamma imaging in 2D is an electron tracking Compton camera, which images single-emission photons employing a gas chamber to induce Compton scattering. Images of prompt gammas were attained at the proton beam energy of 140 MeV. Measurements showed that gamma image in the energy range of 800-2000 keV provides a better match with the proton range compared to the image by lower energy gammas.

Keywords

References

  1. R. Wilson, Radiology 47 (1946) 487.
  2. B. Kozlovsky, R. Murphy, R. Ramaty, Astrophysical J. Suppl. Ser. 141 (2002) 523. https://doi.org/10.1086/340545
  3. G. Bennett, J. Archambeau, B. Archambeau, J. Meltzer, C. Wingate, Science 200 (1978) 1151. https://doi.org/10.1126/science.200.4346.1151
  4. C. Min, C. Kim, M. Yoon, J. Kim, Appl. Phys. Lett. 89 (2006) 183517. https://doi.org/10.1063/1.2378561
  5. C. Kim, C. Min, K. Seo, J. Kim, J. Korean Phys. Soc. 50 (2007) 1510. https://doi.org/10.3938/jkps.50.1510
  6. E. Testa, M. Bajard, M. Chevallier, D. Dauvergne, F. Le Foulher, J. Poizat, C. Ray, M. Testa, N. Freud, J. Letang, Appl. Phys. Lett. 93 (2008) 093506. https://doi.org/10.1063/1.2975841
  7. M. Gensheimer, A. Torunn, I. Yock, N. Liebsch, G. Sharp, H. Paganetti, N. Madan, P. Grant, T. Bortfeld, Int. J. Radiat. Oncol. Biol. Phys. 78 (2010) 268. https://doi.org/10.1016/j.ijrobp.2009.11.060
  8. G. Phillips, Nucl. Instru. Meth. B. 99 (1995) 674. https://doi.org/10.1016/0168-583X(95)80085-9
  9. A. Takada, K. Hattori, H. Kubo, K. Miuchi, T. Nagayoshi, H. Nishimura, Y. Okada, R. Orito, H. Sekiya, A. Tada, T. Tanimori, Nucl. Instru. Meth. A 546 (2005) 258. https://doi.org/10.1016/j.nima.2005.03.050
  10. H. Kubo, K. Miuchi, T. Nagayoshi, A. Ochi, R. Orito, A. Takada, T. Tanimori, M. Ueno, Nucl. Instru. Meth. A 513 (2003) 94. https://doi.org/10.1016/j.nima.2003.08.009
  11. B. Kang, J. Kim, IEEE Trans. Nucl. Sci. 56 (2009) 46.
  12. K. Parodi, F. Ponisch, W. Enghardt, IEEE Trans. Nucl. Sci. 52 (2005) 778.
  13. I. Pshenichnov, I. Mishustin, W. Greiner, Phys. Med. Biol. 51 (2006) 6099. https://doi.org/10.1088/0031-9155/51/23/011
  14. F. Sommerer, F. Ceruti, K. Parodi, A. Ferrari, W. Enghardt, H. Aiginger, Phys. Med. Biol. 54 (2009) 3979. https://doi.org/10.1088/0031-9155/54/13/003
  15. S. Vecchio, F. Attanasi, N. Belcari, M. Camarda, G. Cirrone, G. Cuttone, F. Rosa, N. Lanconelli, S. Moehrs, V. Rosso, G. Russo, A. Guerra, IEEE Trans. Nucl. Sci. 56 (2009) 51.
  16. T. Nishio, T. Ogino, K. Nomura, H. Uchida, Med. Phys. 33 (2006) 4190. https://doi.org/10.1118/1.2361079
  17. A. Knopf, K. Parodi, T. Bortfeld, H. Shih, H. Paganetti, Phys. Med. Biol. 54 (2009) 4477. https://doi.org/10.1088/0031-9155/54/14/008
  18. W. Hsi, D. Indelicato, C. Vargas, S. Duvvuri, Z. Li, J. Palta, Med. Phys. 36 (2009) 4136. https://doi.org/10.1118/1.3193677
  19. E. Fourkal, J. Fan, I. Veltchev, Phys. Med. Biol. 54 (2009) N217. https://doi.org/10.1088/0031-9155/54/11/N02
  20. A. Koehler, R. Schneider, J. Sisterson, Med. Phys. 4 (1977) 297. https://doi.org/10.1118/1.594317
  21. A. Perez-Andujar, W. Newhauser, P. Deluca, Phys. Med. Biol. 54 (2009) 993. https://doi.org/10.1088/0031-9155/54/4/012
  22. J. Kim, J. Korean Phys. Soc. 52 (2008) 738. https://doi.org/10.3938/jkps.52.738
  23. ATOM Phantom is a Product of Computerized Imaging Reference Systems Inc.
  24. T. Tanimori, H. Kubo, K. Miuchi, T. Nagayoshi, Y. Okada, R. Orito, A. Takada, A. Takeda, Nucl. Instru. Meth. A 529 (2004) 373. https://doi.org/10.1016/j.nima.2004.05.014
  25. A. Takada, H. Kubo, H. Nishimura, K. Ueno, K. Hattori, S. Kabuki, S. Kurosawa, K. Miuchi, E. Mizuta, T. Nagayohsi, N. Nonaka, Y. Okada, R. Orito, H. Sekiya, A. Takeda, T. Tanimori, Astrophysical J. 733 (2011) 13. https://doi.org/10.1088/0004-637X/733/1/13
  26. S. Kabuki, K. Ueno, S. Kurosawa, S. Iwaki, H. Kubo, K. Miuchi, Y. Fijii, D. Kim, J. Kim, R. Kohara, O. Miyazaki, T. Sakae, T. Shirahata, T. Takayanagi, T. Terunuma, Y. Tsukahara, E. Yamamoto, K. Yasuoka, T. Tanimori, IEEE Nucl. Sci. Sympo. Conf. Record (2009) 2437.
  27. S. Peterson, D. Robertson, J. Polf, Phys. Med. Biol. 55 (2010) 6841. https://doi.org/10.1088/0031-9155/55/22/015

Cited by

  1. Design Study of the Absorber Detector of a Compton Camera for On-Line Control in Ion Beam Therapy vol.59, pp.5, 2012, https://doi.org/10.1109/tns.2012.2206053
  2. In vivo proton range verification: a review vol.58, pp.15, 2013, https://doi.org/10.1088/0031-9155/58/15/r131
  3. Two-dimensional measurement of the prompt-gamma distribution for proton dose distribution monitoring vol.63, pp.7, 2012, https://doi.org/10.3938/jkps.63.1385
  4. Range verification of passively scattered proton beams based on prompt gamma time patterns vol.59, pp.15, 2012, https://doi.org/10.1088/0031-9155/59/15/4181
  5. Prompt gamma imaging of proton pencil beams at clinical dose rate vol.59, pp.19, 2012, https://doi.org/10.1088/0031-9155/59/19/5849
  6. Proton beam characterization by proton-induced acoustic emission: simulation studies vol.59, pp.21, 2012, https://doi.org/10.1088/0031-9155/59/21/6549
  7. The physics of Cerenkov light production during proton therapy vol.59, pp.23, 2014, https://doi.org/10.1088/0031-9155/59/23/7107
  8. Development of a Compton Camera for Online Range Monitoring of Laser-Accelerated Proton Beams via Prompt-Gamma Detection vol.66, pp.None, 2012, https://doi.org/10.1051/epjconf/20146611036
  9. 양성자 빔 선량 분포 검증을 위한 감마 꼭지점 영상 장치의 양면 실리콘 스트립 검출기 신호처리 모듈 개발 vol.39, pp.2, 2012, https://doi.org/10.14407/jrp.2014.39.2.081
  10. Production of 95mTc for Compton camera imaging vol.303, pp.2, 2012, https://doi.org/10.1007/s10967-014-3508-0
  11. Dose monitoring in particle therapy vol.30, pp.17, 2012, https://doi.org/10.1142/s0217732315400234
  12. Range Verification Methods in Particle Therapy: Underlying Physics and Monte Carlo Modeling vol.5, pp.None, 2012, https://doi.org/10.3389/fonc.2015.00150
  13. Collimated prompt gamma TOF measurements with multi-slit multi-detector configurations vol.10, pp.1, 2012, https://doi.org/10.1088/1748-0221/10/01/p01011
  14. 이차원 양성자 선량 분포 확인을 위한 즉발감마선 이차원분포 측정 장치 개발 vol.26, pp.1, 2012, https://doi.org/10.14316/pmp.2015.26.1.42
  15. Evaluation of proton inelastic reaction models in Geant4 for prompt gamma production during proton radiotherapy vol.60, pp.19, 2012, https://doi.org/10.1088/0031-9155/60/19/7617
  16. Simulation Study of a Combined Pair Production – Compton Camera for In-Vivo Dosimetry During Therapeutic Proton Irradiation vol.62, pp.5, 2012, https://doi.org/10.1109/tns.2015.2448235
  17. Short-lived positron emitters in beam-on PET imaging during proton therapy vol.60, pp.23, 2015, https://doi.org/10.1088/0031-9155/60/23/8923
  18. Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility vol.61, pp.6, 2016, https://doi.org/10.1088/0031-9155/61/6/2432
  19. Proton therapy monitoring by Compton imaging: influence of the large energy spectrum of the prompt-γ radiation vol.61, pp.8, 2012, https://doi.org/10.1088/0031-9155/61/8/3127
  20. First Images of a Three-Layer Compton Telescope Prototype for Treatment Monitoring in Hadron Therapy vol.6, pp.None, 2012, https://doi.org/10.3389/fonc.2016.00014
  21. Compton Camera and Prompt Gamma Ray Timing: Two Methods for In Vivo Range Assessment in Proton Therapy vol.6, pp.None, 2012, https://doi.org/10.3389/fonc.2016.00080
  22. Accelerated prompt gamma estimation for clinical proton therapy simulations vol.61, pp.21, 2012, https://doi.org/10.1088/0031-9155/61/21/7725
  23. Structural characterization of Mg substituted on A/B sites in $$\hbox {NiFe}_2\hbox {O}_4$$ NiFe 2 O 4 nanoparticles using autocombustion method vol.89, pp.1, 2012, https://doi.org/10.1007/s12043-017-1394-z
  24. Performance evaluation of a multiple-scattering Compton imager for distribution of prompt gamma-rays in proton therapy vol.70, pp.2, 2012, https://doi.org/10.3938/jkps.70.184
  25. Monte Carlo simulation of photon emission below a few hundred kiloelectronvolts for beam monitoring in carbon ion therapy vol.88, pp.1, 2012, https://doi.org/10.1063/1.4973986
  26. Study of gamma-ray emission by proton beam interaction with injected Boron atoms for future medical imaging applications vol.12, pp.3, 2012, https://doi.org/10.1088/1748-0221/12/03/c03049
  27. A cost-effective monitoring technique in particle therapy via uncollimated prompt gamma peak integration vol.110, pp.15, 2012, https://doi.org/10.1063/1.4980103
  28. Double-Layered CZT Compton Imager vol.64, pp.7, 2012, https://doi.org/10.1109/tns.2016.2632977
  29. Benchmarking Geant4 hadronic models for prompt‐ γ monitoring in carbon ion therapy vol.44, pp.8, 2012, https://doi.org/10.1002/mp.12348
  30. Performance evaluation of MACACO: a multilayer Compton camera vol.62, pp.18, 2012, https://doi.org/10.1088/1361-6560/aa8070
  31. Imaging of monochromatic beams by measuring secondary electron bremsstrahlung for carbon-ion therapy using a pinhole x-ray camera vol.63, pp.4, 2018, https://doi.org/10.1088/1361-6560/aaa17c
  32. 3D prompt gamma imaging for proton beam range verification vol.63, pp.3, 2018, https://doi.org/10.1088/1361-6560/aaa203
  33. Gamma electron vertex imaging for in-vivo beam-range measurement in proton therapy: Experimental results vol.113, pp.11, 2012, https://doi.org/10.1063/1.5039448
  34. Monte Carlo simulation study on coincidence-based imaging system for neutron-induced prompt-gamma activation imaging vol.318, pp.3, 2012, https://doi.org/10.1007/s10967-018-6302-6
  35. Precision imaging of 4.4 MeV gamma rays using a 3-D position sensitive Compton camera vol.8, pp.None, 2012, https://doi.org/10.1038/s41598-018-26591-2
  36. Enhancement of Compton camera images reconstructed by inversion of a conical Radon transform vol.35, pp.1, 2019, https://doi.org/10.1088/1361-6420/aaecdb
  37. A simulation study on reduction of the background component using veto counters for imaging of therapeutic proton beams by measuring secondary electron bremsstrahlung using a parallel-hole collimator vol.58, pp.2, 2012, https://doi.org/10.7567/1347-4065/aafb00
  38. Development of a YAP(Ce) camera for the imaging of secondary electron bremsstrahlung x-ray emitted during carbon-ion irradiation toward the use of clinical conditions vol.64, pp.13, 2012, https://doi.org/10.1088/1361-6560/ab2072
  39. Future Prospects for Particle Therapy Accelerators vol.10, pp.1, 2012, https://doi.org/10.1142/s1793626819300056
  40. Analytical approach to the reaction cross section of the fusion of protons with boron isotopes aimed at cancer therapy vol.151, pp.None, 2012, https://doi.org/10.1016/j.apradiso.2019.04.034
  41. A spectral reconstruction algorithm for two-plane Compton cameras vol.65, pp.2, 2012, https://doi.org/10.1088/1361-6560/ab58ad
  42. CCMod: a GATE module for Compton camera imaging simulation vol.65, pp.5, 2012, https://doi.org/10.1088/1361-6560/ab6529
  43. Sensitivity improvement of YAP(Ce) cameras for imaging of secondary electron bremsstrahlung x-rays emitted during carbon-ion irradiation: problem and solution vol.65, pp.10, 2020, https://doi.org/10.1088/1361-6560/ab7a6e
  44. Influence of momentum acceptance on range monitoring of 11C and 15O ion beams using in-beam PET vol.65, pp.12, 2020, https://doi.org/10.1088/1361-6560/ab8059
  45. Dose image prediction for range and width verifications from carbon ion‐induced secondary electron bremsstrahlung x‐rays using deep learning workflow vol.47, pp.8, 2012, https://doi.org/10.1002/mp.14205
  46. Estimation of shifts of therapeutic carbon-ion beams owing to cavities in a polyethylene target by measuring prompt X-ray images vol.59, pp.8, 2020, https://doi.org/10.35848/1347-4065/aba22a
  47. Classification of the source of treatment deviation in proton therapy using prompt‐gamma imaging information vol.47, pp.10, 2012, https://doi.org/10.1002/mp.14393
  48. Energetic $ \alpha $ -particle sources produced through proton-boron reactions by high-energy high-intensity laser beams vol.103, pp.5, 2012, https://doi.org/10.1103/physreve.103.053202
  49. GaN-Based Readout Circuit System for Reliable Prompt Gamma Imaging in Proton Therapy vol.11, pp.12, 2012, https://doi.org/10.3390/app11125606