DOI QR코드

DOI QR Code

Structural and dielectric properties in the $(Ba_{1-x}Ca_x)(Ti_{0.95}Zr_{0.05})O_3$ ceramics

  • Li, Wei (College of Materials Science and Engineering, Liaocheng University) ;
  • Xu, Zhijun (College of Materials Science and Engineering, Liaocheng University) ;
  • Chu, Ruiqing (College of Materials Science and Engineering, Liaocheng University) ;
  • Fu, Peng (College of Materials Science and Engineering, Liaocheng University) ;
  • Zang, Guozhong (College of Materials Science and Engineering, Liaocheng University)
  • Published : 2012.05.31

Abstract

Lead-free $(Ba_{1-x}Ca_x)(Ti_{0.95}Zr_{0.05})O_3$ (x = 0.05-0.40) (BCZT) ceramics were prepared by solid-state reaction technique. XRD results show that the samples in the composition range of $0.05{\leq}x{\leq}0.25$ exhibit pure perovskite structures and undergo a polymorphic phase transitions from orthorhombic to tetragonal phase around room temperature. The biphasic structures are detected at $x{\geq}0.30$ and the dielectric peaks become broad and dielectric constants decrease with increasing Ca content. Ca replacement at Ba site leads to diffuseness, whereas Ca occupancy at Ti site leads to decrease of the $T_c$.

Keywords

References

  1. L.L. Zhang, X.S. Wang, H. Liu, X. Yao, J. Am. Ceram. Soc. 93 (2010) 1049. https://doi.org/10.1111/j.1551-2916.2009.03493.x
  2. D. Damjanovic, Rep. Prog. Phys. 61 (1998) 1267. https://doi.org/10.1088/0034-4885/61/9/002
  3. J.F. Scott, Science 315 (2007) 954. https://doi.org/10.1126/science.1129564
  4. T.R. Shrout, S.J. Zhang, J. Electroceram. 19 (2007) 111.
  5. T. Takenaka, H. Nagata, J. Eur. Ceram. Soc. 25 (2005) 2693. https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
  6. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics. Academic Press, London, 1971.
  7. E. Antonelli, M. Letonturier, J.C. M'Peko, A.C. Hernandes, J. Eur. Ceram. Soc. 29 (2009) 1449. https://doi.org/10.1016/j.jeurceramsoc.2008.09.009
  8. C. Ostos, L. Mestres, M.L. MartinezeSarrion, J.E. Garcia, A. Albareda, R. Perez, Solid State Sci. 11 (2009) 1016. https://doi.org/10.1016/j.solidstatesciences.2009.01.006
  9. W.Q. Cao, J.W. Xiong, J.P. Sun, Mater. Chem. Phys. 106 (2007) 338. https://doi.org/10.1016/j.matchemphys.2007.06.017
  10. F. Boujelben, F. Bahri, C. Bouday, A. Maalej, H. Khemakhem, A. Simon, M. Maglione, J. Alloys Compd. 481 (2009) 559. https://doi.org/10.1016/j.jallcom.2009.03.081
  11. C.H. Hsu, H.A. Ho, Mater. Lett. 64 (2010) 396. https://doi.org/10.1016/j.matlet.2009.11.028
  12. X.R. Cheng, M.R. Shen, Solid State Commun. 141 (2007) 587. https://doi.org/10.1016/j.ssc.2007.01.009
  13. T. Maiti, R. Guo, A.S. Bhalla, Appl. Phys. Lett. 89 (2006) 122909. https://doi.org/10.1063/1.2354438
  14. P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, J. Appl. Phys. 89 (2001) 8085. https://doi.org/10.1063/1.1369399
  15. Z. Yu, C. Ang, R.Y. Guo, A.S. Bhalla, J. Appl. Phys. 92 (2002) 2655. https://doi.org/10.1063/1.1495069
  16. D. Maurya, C.W. Ahn, S.J. Zhang, S. Priya, J. Am. Ceram. Soc. 93 (2010) 1225.
  17. S.W. Zhang, H.L. Zhang, B.P. Zhang, G.L. Zhao, J. Eur. Ceram. Soc. 29 (2009) 3235. https://doi.org/10.1016/j.jeurceramsoc.2009.06.034
  18. X.S. Wang, H. Yamada, C.N. Xu, Appl. Phys. Lett. 86 (2005) 022905. https://doi.org/10.1063/1.1850598
  19. A. Purwanto, D. Hidayat, Y. Terashi, K. Okuyama, Chem. Mater. 20 (2008) 7440. https://doi.org/10.1021/cm802524e
  20. L.L. Zhang, X.S. Wang, W. Yang, H. Liu, X. Yao, J. Appl. Phys. 104 (2008) 014104. https://doi.org/10.1063/1.2949253
  21. X.S. Wang, L.L. Zhang, H. Liu, J.W. Zhai, X. Yao, Mater. Chem. Phys. 112 (2008) 675. https://doi.org/10.1016/j.matchemphys.2008.06.020
  22. P. Zheng, J.L. Zhang, S.F. Shao, Y.Q. Tan, C.L. Wang, Appl. Phys. Lett. 94 (2009) 032902. https://doi.org/10.1063/1.3072347
  23. W.F. Liu, X.B. Ren, Phys. Rev. Lett. 103 (2009) 257602.
  24. W. Li, Z.J. Xu, R.Q. Chu, P. Fu, G.Z. Zang, J. Am. Ceram. Soc. 93 (2010) 2942. https://doi.org/10.1111/j.1551-2916.2010.03907.x
  25. T. Badapanda, S.K. Rout, S. Panigrahi, T.P. Sinha, Curr. Appl. Phys. 9 (2009) 727. https://doi.org/10.1016/j.cap.2008.06.014
  26. D. Viehland, M. Wuttig, L.E. Cross, Ferroelectrics 120 (1991) 71. https://doi.org/10.1080/00150199108216802
  27. Y.H. Han, J.B. Appleby, D.M. Smyth, J. Am. Ceram. Soc. 70 (1987) 96. https://doi.org/10.1111/j.1151-2916.1987.tb04936.x
  28. X.W. Zhang, Y.H. Han, M. Lal, D.M. Smyth, J. Am. Ceram. Soc. 70 (1987) 100. https://doi.org/10.1111/j.1151-2916.1987.tb04937.x
  29. P.S.R. Krishna, D. Pandey, V.S. Tiwari, R. Chakravarthy, B.A. Dasannacharya, Appl. Phys. Lett. 62 (1993) 231. https://doi.org/10.1063/1.108974
  30. P. Victor, R. Ranjith, S.B. Krupanidhi, J. Appl. Phys. 94 (2003) 7702. https://doi.org/10.1063/1.1618914

Cited by

  1. Synthesis and characterization of lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 ceramic vol.113, pp.21, 2012, https://doi.org/10.1063/1.4808338
  2. Effect of vanadium doping on the electric properties of barium titanate hafnate ceramics vol.24, pp.7, 2012, https://doi.org/10.1007/s10854-013-1115-4
  3. Effect of Zn2+ and Nb5+ Co-Doping on Electrical Properties of BCZT Ceramics by the Seed-Induced Method vol.458, pp.1, 2012, https://doi.org/10.1080/00150193.2013.850015
  4. (Ba1-xCax)(Ti0.85Zr0.12Sn0.03)O3계 세라믹스의 미세구조 및 유전 특성 vol.27, pp.12, 2012, https://doi.org/10.4313/jkem.2014.27.12.797
  5. Microstructure and electric properties of Nb doping x(Ba0.7Ca0.3)TiO3-(1-x)Ba(Zr0.2Ti0.8)O3 ceramics vol.685, pp.None, 2012, https://doi.org/10.1016/j.jallcom.2016.06.203
  6. Diffuse Phase Transition and Dielectric Properties of Lead-Free Zr-Doped BCTS Ceramics vol.866, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/amm.866.259
  7. Multiphase coexistence and enhanced electrical properties in (1-x-y)BaTiO3-xCaTiO3-yBaZrO3 lead-free ceramics vol.43, pp.16, 2017, https://doi.org/10.1016/j.ceramint.2017.07.057
  8. Influence of Ca2+concentration on structure and electrical properties of (Ba1−xCax)(Zr0.2Ti0.8)O3ceramics vol.5, pp.3, 2012, https://doi.org/10.1088/2053-1591/aab179
  9. Investigation of ferroelectric, piezoelectric and mechanically coupled properties of lead-free (Ba0.85Ca0.15) (Zr0.1Ti0.9)O3 ceramics vol.118, pp.5, 2012, https://doi.org/10.1080/17436753.2019.1573565
  10. Structure refinement and impedance analysis of Ba0.85Ca0.15Zr0.10Ti0.90O3 ceramics sintered in air and nitrogen vol.30, pp.23, 2012, https://doi.org/10.1007/s10854-019-02433-3
  11. Effect of Gadolinium on the structural and dielectric properties of BCZT ceramics vol.93, pp.2, 2020, https://doi.org/10.1080/01411594.2020.1711905
  12. The effects of Ca, Zr and Sn substitutions into a ternary system of BaTiO3-BaSnO3-BaZrO3 towards its dielectric and piezoelectric properties: a review vol.32, pp.10, 2012, https://doi.org/10.1007/s10854-020-03756-2
  13. Enhanced ferroelectric and piezoelectric properties of BCT-BZT at the morphotropic phase boundary driven by the coexistence of phases with different symmetries vol.104, pp.22, 2021, https://doi.org/10.1103/physrevb.104.224105