DOI QR코드

DOI QR Code

Electrical transport properties of $Au/SiO_2/n$-GaN MIS structure in a wide temperature range

  • Lakshmi, B. Prasanna (Department of Physics, Sri Venkateswara University) ;
  • Reddy, M. Siva Pratap (Department of Physics, Sri Venkateswara University) ;
  • Kumar, A. Ashok (Department of Physics, Y.S.R. Engineering College of Yogi Vemana University) ;
  • Reddy, V. Rajagopal (Department of Physics, Sri Venkateswara University)
  • Published : 2012.05.31

Abstract

The temperature-dependent electrical properties of $Au/SiO_{2}/n-GaN$ metal-insulator-semiconductor (MIS) structure have been investigated in the temperature range of 120-390 K. Anomalous strong temperature dependencies of the barrier height $({\Phi}_{bo})$, ideality factor (n), interface state density $(N_{SS})$ and series resistance (RS) are obtained. Such behaviour is attributed to barrier inhomogeneities by assuming a Gaussian distribution of barrier heights (GD BHs) at the interface. It is evident that the diode parameters such as zero-bias barrier height increases and the ideality factor decreases with increasing temperature. The values of series resistance that are obtained from Cheung's method is decreasing with increasing in temperature. The temperature-dependent currentevoltage characteristics of the MIS diode have been shown a double Gaussian distribution giving mean barrier heights of 0.38 eV and 1.06 eV and standard deviations of 0.0561 and 0.2742 V, respectively. A modified ln $(I_{o}/T^{2})$ - $q_2{\sigma}o^2/2k^2T^2$ versus $10^{3}/T$ plot for the two temperature regions gives $\overline{\varphi_{bo}}$ and A* as 0.55 eV and 11.56 A $cm^{-2}$ $K^{-2}$, and 1.02 eV and 23.48 A $cm^{-2}$ $K^{-2}$ respectively. The Interface state density values are calculated by IeV and CeV measurements at different temperatures using Terman's method. It is observed that the interface state density decreases with increase in temperature (120-390 K). Therefore, it has been concluded that the temperature dependence of the forward IeV characteristics of the $Au/SiO_{2}/n-GaN$ Schottky diodes can be explained with a double GD of the BHs.

Keywords

References

  1. S.J. Pearton, J.C. Zolper, R.J. Shul, F.J. Ren, J. Appl. Phys. 86 (1999) 1. https://doi.org/10.1063/1.371145
  2. H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys. Rev. 76 (1994) 1363. https://doi.org/10.1063/1.358463
  3. S.N. Mohammad, H. Morkoc, Prog. Quantum Electron 20 (1996) 361. https://doi.org/10.1016/S0079-6727(96)00002-X
  4. S.N. Mohammad, H. Morkoc, Science 267 (1995) 51. https://doi.org/10.1126/science.267.5194.51
  5. L.C. Chen, C.Y. Hsu, W.H. Lan, S.Y. Teng, Solid-State Electron 47 (2003) 1843. https://doi.org/10.1016/S0038-1101(03)00129-1
  6. R. Werner, M. Reinhardt, M. Emmerling, A. Forchel, V. Harle, A. Bazhenov, Physica E 7 (2000) 915. https://doi.org/10.1016/S1386-9477(00)00087-4
  7. D. Mistele, Mater. Sci. Eng. B 93 (2002) 107. https://doi.org/10.1016/S0921-5107(02)00052-1
  8. S. Pearton, Mater. Sci. Eng. B 82 (2001) 227. https://doi.org/10.1016/S0921-5107(00)00767-4
  9. K.M. Chang, C.C. Chen, C.C. Lang, Solid-State Electron 46 (2002) 1399. https://doi.org/10.1016/S0038-1101(02)00085-0
  10. J. Kuzmik, G. Konstantinidis, S. Harasek, S. Hascik, E. Bertagnolli, A. Georgakilas, D. Pogany, Semicond. Sci. Technol. 19 (2004) 1364. https://doi.org/10.1088/0268-1242/19/12/006
  11. C. Bae, C. Krug, G. Lucovsky, J. Vac. Sci. Technol. A 22 (6) (2004) 2379.
  12. T.-H. Tsai, H.-I. Chen, K.-W. Lin, Y.-W. Kuo, C.-F. Chang, C.-W. Hung, L.-Y. Chen, T.-P. Chen, Y.-C. Liu, W.-C. Liu, Sens. Actuators, B 136 (2009) 338. https://doi.org/10.1016/j.snb.2008.12.030
  13. F. Tian, E.F. Chor, Thin Solid Films 518 (2010) e121. https://doi.org/10.1016/j.tsf.2010.03.106
  14. T. Sawada, Y. Ito, K. Imai, K. Suzuki, H. Tomozawa, S. Sakai, Appl. Surf. Sci. 159 (2000) 449.
  15. T. Hashizume, E. Alekseev, D. Pavlidis, K.S. Boutros, J. Redwing, J. Appl. Phys. 88 (2000) 1983. https://doi.org/10.1063/1.1303722
  16. Y. Nakano, T. Jimbo, Appl. Phys. Lett. 80 (2002) 4756. https://doi.org/10.1063/1.1486266
  17. Z. Tekeli, S. Altindal, M. Cakmak, S. Ozcelik, D. Caliskan, E. Ozbay, J. Appl. Phys. 102 (2007) 054510. https://doi.org/10.1063/1.2777881
  18. T.-H. Tsai, J.-R. Huang, K.-W. Lin, W.-C. Hsu, H.-I. Chen, W.-C. Liu, Sens. Actuators, B 129 (2008) 292. https://doi.org/10.1016/j.snb.2007.08.028
  19. Z. Tekeli, S. Altindal, M. Cakmak, S. Ozcelik, E. Ozbay, Microelectron. Eng. 85 (2008) 2316. https://doi.org/10.1016/j.mee.2008.08.005
  20. E. Arslan, Y. Safak, S. Altindal, O. Kelekci, E. Ozbay, J. Non-Cryst. Solids 356 (2010) 1006. https://doi.org/10.1016/j.jnoncrysol.2010.01.024
  21. T. C- Lee, J.-T. Yan, Sens. Actuators, B 147 (2010) 723. https://doi.org/10.1016/j.snb.2010.04.008
  22. S. Demirezen, S. Altindal, Physica B 405 (2010) 1130. https://doi.org/10.1016/j.physb.2009.11.015
  23. E. Arslan, S. Butun, Y. Safak, H. Uslu, I. Tascioglu, S. Altindal, E. Ozbay, Microelectron. Reliab. 51 (2011) 370. https://doi.org/10.1016/j.microrel.2010.08.022
  24. S.M. Sze, Physics of Semiconductor Devices. Wiley, New York, 1981.
  25. E.H. Rhoderick, R.H. Williams, Metal-sSemiconductor Contacts. Clarendan, Oxford, 1988.
  26. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49 (1986) 85. https://doi.org/10.1063/1.97359
  27. X.J. Wang, L. He, J. Electron. Mater. 27 (1998) 1272. https://doi.org/10.1007/s11664-998-0082-7
  28. V. .Rajagopal Reddy, M. Siva Pratap Reddy, B. Prasanna Lakshmi, A. Ashok Kumar, J.Alloys Compd. 509 (2011) 8001. https://doi.org/10.1016/j.jallcom.2011.05.055
  29. S. Karatas, S. Altindal, A. Turut, A. Ozmen, Appl. Surf. Sci. 217 (2003) 250. https://doi.org/10.1016/S0169-4332(03)00564-6
  30. J.H. Werner, H.H. Guttler, J. Appl. Phys. 69 (1991) 152.
  31. A. Gumus, A. Turut, N. Yalcin, J. Appl. Phys. 91 (2002) 245. https://doi.org/10.1063/1.1424054
  32. S. Chand, J. Kumar, Appl. Phys. A 63 (1996) 171.
  33. S. Chand, J. Kumar, J. Appl. Phys. 80 (1996) 288. https://doi.org/10.1063/1.362818
  34. J.P. Sullivan, R.T. Tung, M.R. Pinto, W.R. Graham, J. Appl. Phys. 70 (1991) 7403. https://doi.org/10.1063/1.349737
  35. R.T. Tung, Phys. Rev. B 45 (1992) 13509. https://doi.org/10.1103/PhysRevB.45.13509
  36. R.F. Schmisdorf, T.U. Kampen, W. Monch, Surf. Sci. 324 (1995) 249. https://doi.org/10.1016/0039-6028(94)00791-8
  37. S. Zhu, R.L. Van Meirhaeghe, C. Detavernier, F. Cardon, G.P. Ru, X.P. Qu, B.Z. Li, Solid-State Electron 44 (2000) 663. https://doi.org/10.1016/S0038-1101(99)00268-3
  38. S. Chand, Semicond. Sci. Technol. 19 (2004) 82. https://doi.org/10.1088/0268-1242/19/1/014
  39. S. Zeyrek, S. Altindal, H. Yuzer, M.M. Bulbul, Appl. Surf. Sci. 252 (2006) 2999. https://doi.org/10.1016/j.apsusc.2005.05.008
  40. S. Chand, J. Kumar, Semicond. Sci. Technol. 11 (1996) 1203. https://doi.org/10.1088/0268-1242/11/8/015
  41. H.C. Card, E.H. Rhoderick, J. Phys. D: Appl. Phys. 4 (1971) 1589. https://doi.org/10.1088/0022-3727/4/10/319
  42. A. Turut, M. Saglam, H. Efeoglu, N. Yalcin, M. Yildirim, B. Abay, Physica B 205 (1995) 41. https://doi.org/10.1016/0921-4526(94)00229-O
  43. O. Gullu, A. Turut, J. Appl. Phys. 106 (2009) 103717(6).
  44. A. Singh, K.C. Reinhardt, W.A. Anderson, J. Appl. Phys. 68 (1990) 4788. https://doi.org/10.1063/1.346135
  45. M.K. Hudait, S.B. Krupanidhi, Mater. Sci. Eng. B 87 (2001) 141. https://doi.org/10.1016/S0921-5107(01)00713-9
  46. X. Wu, E.S. Yang, J. Appl. Phys. 65 (1989) 3560. https://doi.org/10.1063/1.342631
  47. B. Akkal, Z. Benemara, A. Boudissa, N.B. Bouiadjra, M. Amrani, I. Bideux, Mater. Sci. Eng. B 55 (1998) 162. https://doi.org/10.1016/S0921-5107(98)00168-8

Cited by

  1. Study of barrier inhomogeneities in I-V-T and C-V-T characteristics of Al/Al2O3/PVA:n-ZnSe metal-oxide-semiconductor diode vol.112, pp.2, 2012, https://doi.org/10.1063/1.4737589
  2. Effect of alloy composition on structural, optical and morphological properties and electrical characteristics of GaxIn1−xP/GaAs structure vol.24, pp.4, 2012, https://doi.org/10.1007/s10854-012-0937-9
  3. Pt/n-GaN metal-semiconductor and Pt/HfO2/n-GaN metal-insulator-semiconductor Schottky diodes vol.1736, pp.None, 2012, https://doi.org/10.1557/opl.2014.938
  4. Investigation of current‐voltage characteristics and current conduction mechanisms in composites of polyvinyl alcohol and bismuth oxide vol.54, pp.8, 2014, https://doi.org/10.1002/pen.23726
  5. Electrical characteristics of Au/Ti/n-GaAs contacts over a wide measurement temperature range vol.89, pp.9, 2014, https://doi.org/10.1088/0031-8949/89/9/095804
  6. On double exponential forward bias current-voltage (I–V) characteristics of Au/Ca3Co4Ga0.001Ox/n-Si/Au (MIS) type structures in temperature range of 80–340 K vol.95, pp.10, 2012, https://doi.org/10.1080/14786435.2015.1009517
  7. Temperature dependent electrical characterisation of Pt/HfO2/n-GaN metal-insulator-semiconductor (MIS) Schottky diodes vol.5, pp.9, 2012, https://doi.org/10.1063/1.4930199
  8. Electrical properties and transport mechanisms of Au/Ba0.6Sr0.4TiO3/GaN metal-insulator-semiconductor (MIS) diode at high temperature range vol.122, pp.5, 2012, https://doi.org/10.1007/s00339-016-0047-2
  9. Double exponential I-V characteristics and double Gaussian distribution of barrier heights in (Au/Ti)/Al2O3/n-GaAs (MIS)-type Schottky barrier diodes in wide temperature range vol.122, pp.12, 2016, https://doi.org/10.1007/s00339-016-0558-x
  10. Interpretation of barrier height inhomogeneities in Au/In2S3/SnO2/(In-Ga) structures at low temperatures vol.28, pp.10, 2012, https://doi.org/10.1007/s10854-017-6440-6
  11. Frequency and voltage dependent electrical and dielectric properties of SiGe thin films for solar cells application deposited on p-type silicon vol.49, pp.1, 2012, https://doi.org/10.1007/s11082-016-0846-x
  12. A study of temperature dependent current-voltage (I-V-T) characteristics in Ni/sol-gel β-Ga2O3/n-GaN structure vol.29, pp.13, 2012, https://doi.org/10.1007/s10854-018-9213-y
  13. Interfacial Properties of Atomic Layer Deposited Al2O3/AlN Bilayer on GaN vol.28, pp.5, 2018, https://doi.org/10.3740/mrsk.2018.28.5.268
  14. Schottky Junction Vertical Channel GaN Static Induction Transistor with a Sub‐Micrometer Fin Width vol.5, pp.1, 2012, https://doi.org/10.1002/aelm.201800689
  15. Investigation, analysis and comparison of current-voltage characteristics for Au/Ni/GaN Schottky structure using I-V-T simulation vol.37, pp.3, 2019, https://doi.org/10.2478/msp-2019-0041
  16. Electrical and Structural Properties of All-Sputtered Al/SiO2/p-GaN MOS Schottky Diode vol.9, pp.10, 2012, https://doi.org/10.3390/coatings9100685
  17. The possible current-conduction mechanism in the Au/(CoSO4-PVP)/n-Si junctions vol.31, pp.21, 2012, https://doi.org/10.1007/s10854-020-04406-3
  18. On the Multi-parallel Diodes Model in Au/PVA/n-GaAs Schottky Diodes and Investigation of Conduction Mechanisms (CMs) in a Temperature Range of 80-360 K vol.49, pp.12, 2012, https://doi.org/10.1007/s11664-020-08473-4
  19. Temperature dependence of electrical parameters of the Cu/n-Si metal semiconductor Schottky structures vol.1224, pp.None, 2012, https://doi.org/10.1016/j.molstruc.2020.129057
  20. Current-voltage characteristics and photovoltaic effect of a Au/ZnFe2O4/GaN Schottky junction vol.54, pp.9, 2012, https://doi.org/10.1088/1361-6463/abc8b8
  21. Temperature analysis of the Gaussian distribution modeling the barrier height inhomogeneity in the Tungsten/4H-SiC Schottky diode vol.127, pp.9, 2021, https://doi.org/10.1007/s00339-021-04787-0