DOI QR코드

DOI QR Code

Pt-Ni alloy nanoparticles supported on CNF as catalyst for direct ethanol fuel cells

  • Soundararajan, D. (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Park, J.H. (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Kim, K.H. (Department of Physics, Yeungnam University) ;
  • Ko, J.M. (Division of Applied Chemistry and Biotechnology, Hanbat National University)
  • Published : 2012.05.31

Abstract

Carbon nanofiber (CNF) network supported Pt and Pt-Ni alloy nano particle catalysts were prepared by electrochemical deposition at different deposition cycles. Structure, composition and surface morphology of the Pt/CNF and Pt-Ni/CNF were analyzed using X-ray diffraction, Energy dispersive X-ray spectroscopy and field emission scanning electron microscopy. Structural analysis by XRD revealed a face centered cubic crystal structure for Pt and its alloy. SEM images have shown that the PteNi nanoparticles distributed evenly on the CNF network. The electrocatalytic activity of the Pt/CNF and Pt-Ni/CNF electrodes was verified using an electrochemical linear voltammetrty (ELV), cyclic voltammetry (ECV) and electrochemical impedance spectroscopy (EIS) in an alkaline solution containing 1 M $C_{2}H_{5}OH$ + 1 M KOH. The results show increased catalytic activity with enhancement of the Pt-Ni alloy formation.

Keywords

References

  1. C. Lamy, E.M. Belgsir, J.M. Leger, J. Appl. Electrochem. 31 (2001) 799. https://doi.org/10.1023/A:1017587310150
  2. E. Peled, T. Duvdevani, A. Aharon, A. Melman, Electrochem. Solid-State Lett. 4 (2001) A38. https://doi.org/10.1149/1.1355036
  3. G. Li, P.G. Pickup, J. Power Sources 161 (2006) 256. https://doi.org/10.1016/j.jpowsour.2006.03.071
  4. J. Wang, S. Wasmus, R.F. Savinell, J. Electrochem. Soc. 142 (1995) 4218. https://doi.org/10.1149/1.2048487
  5. G.J. Wang, Y.Z. Gao, Z.B. Wang, C.Y. Du, J.J. Wang, G.P. Yin, J. Power Sources 195 (2010) 185. https://doi.org/10.1016/j.jpowsour.2009.06.080
  6. S. Freni, G. Maggio, S. Cavallaro, J. Power Sources 62 (1996) 67. https://doi.org/10.1016/S0378-7753(96)02403-2
  7. G. Andreadis, Tsiakaras, P. Chem. Eng. Sci. 61 (2006) 7497. https://doi.org/10.1016/j.ces.2006.08.028
  8. A. Ghumman, P.G. Pickup, J. Power Sources 179 (2008) 280. https://doi.org/10.1016/j.jpowsour.2007.12.071
  9. Y.H. Lin, X.L. Cui, Langmuir 21 (2005) 11474. https://doi.org/10.1021/la051272o
  10. C.T. Hsieh, J.Y. Lin, J.L. Wei, Int. J. Hydrogen Energy 34 (2009) 685. https://doi.org/10.1016/j.ijhydene.2008.11.008
  11. K. Choi, K. Lee, T. Jeon, H. Park, N. Jung, Y. Chungand, Y. Sung, J. Electrochem. Sci. Tech. 1 (2010) 19. https://doi.org/10.5229/JECST.2010.1.1.019
  12. T. Toda, H. Igarashi, M. Watanabe, J. Electrochem. Soc. 145 (1998) 4185. https://doi.org/10.1149/1.1838934
  13. T. Toda, H. Igarashi, H. Uchida, M. Watanabe, J. Electrochem.Soc. 146 (1999) 3750. https://doi.org/10.1149/1.1392544
  14. U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Markovic, P.N. Ross, J.Phys. Chem. B. 106 (2002) 4181.
  15. U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, N.M. Markovic, P.N. Ross, Electrochim. Acta 47 (2002) 3787. https://doi.org/10.1016/S0013-4686(02)00349-3
  16. V. Stamenkovic, T.J. Schmidt, P.N. Ross, N.M. Markovic, J.Phys. Chem. B. 106 (2002) 11970. https://doi.org/10.1021/jp021182h
  17. G.T. Glass, G.L. Cahen, G.R. Stoner, E.J. Taylor, J. Electrochem.Soc. 134 (1987) 158.
  18. E. Gyenge, M. Atwan, D. Northwood, J. Electrochem. Soc. 153 (2006) A150. https://doi.org/10.1149/1.2131831
  19. C.T. Hsieh, J.Y. Lin, J. Power Sources 188 (2009) 347. https://doi.org/10.1016/j.jpowsour.2008.12.031
  20. J. Choi, W. Heung, Y. Ha, T. Lim, I. Oh, S.A. Hong, H. Lee, J. Power Sources 156 (2006) 466. https://doi.org/10.1016/j.jpowsour.2005.05.075
  21. J.E. Huang, D.J. Guo, Y.G. Yao, H.L. Li, J. Electroanal. Chem. 577 (2005) 93. https://doi.org/10.1016/j.jelechem.2004.11.019
  22. S. Kim, Y. Jung, S.J. Park, Colloids Surf. A. 313 (2008) 220.
  23. Y.Y. Tong, C. Rice, A. Wieckowski, E. Oldfield, J. Am. Chem. Soc. 122 (2000) 1123. https://doi.org/10.1021/ja9922274
  24. I.S. Park, K.W. Park, J.H. Choi, C.R. Park, Y.E. Sung, Carbon 45 (2007) 28. https://doi.org/10.1016/j.carbon.2006.08.011
  25. K.W. Park, Y.E. Sung, S. Han, Y. Yun, T. Hyeon, J. Phys. Chem. B. 108 (2004) 939. https://doi.org/10.1021/jp0368031
  26. G. Casella, M.R. Guascito, M.G. Sannazzaro, J. Electroanal. Chem. 462 (1999) 202. https://doi.org/10.1016/S0022-0728(98)00413-6
  27. Y. Xu, X. Lin, Electrochim. Acta 52 (2007) 5140. https://doi.org/10.1016/j.electacta.2007.02.037
  28. S. Venkatachalam, D. Mangalaraj, Sa.K. Narayandass, S. Velumani, P. Schabes-Retchkiman, J.A. Ascencio, Mat. Chem. Phys. 103 (2007) 305. https://doi.org/10.1016/j.matchemphys.2007.02.077
  29. Hui Yang, Christophe Coutanceau, Jean-Michel Le'ger, Nicolas Alonso-Vante, Claude Lamy, J. Electroanalytical Chem. 576 (2005) 305-313. https://doi.org/10.1016/j.jelechem.2004.10.026
  30. Weijiang Zhoua, Zhenhua Zhoua, Shuqin Songa, Wenzhen Li, Gongquan Suna, Panagiotis Tsiakaras, Qin Xin, Appl. Catal. B. Environ. 46 (2003) 273-285. https://doi.org/10.1016/S0926-3373(03)00218-2
  31. S.J. Lee, S. Mukerjee, J. McBreen, Y.W. Rho, Y.T. Kho, T.H. Lee, Electrochim. Acta 43 (1998) 3693. https://doi.org/10.1016/S0013-4686(98)00127-3
  32. J. Chen, M. Wang, B. Liu, Z. Fan, K. Cui, Y. Kuang, J. Phys. Chem. B. 110 (2006) 1775.
  33. Z.L. Liu, J.Y. Lee, M. Han, W.X. Chen, L.M. Gan, J. Mater. Chem. 12 (2002) 453.
  34. S. Trasatti, O.A. Petrii, Pure Appl. Chem. 63 (1991) 711. https://doi.org/10.1351/pac199163050711
  35. C.T. Hsieh, J.Y. Lin, J.L. Wei, Electrochim. Acta 54 (2009) 6322. https://doi.org/10.1016/j.electacta.2009.05.088
  36. T. Osaka, X. Liu, M. Nojima, T. Momma, J. Electrochem Soc. 146 (1999) 1724. https://doi.org/10.1149/1.1391833
  37. K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, John Wiley, 1987.
  38. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, 1999.
  39. J.N. Nian, H. Teng, J.Phys. Chem. B. 109 (2005) 10279-10284. https://doi.org/10.1021/jp044171s

Cited by

  1. Durability of a PtSn Ethanol Oxidation Electrocatalyst vol.1, pp.8, 2012, https://doi.org/10.1002/celc.201400014
  2. Synthesis of CoFe2O4 Magnetic Nanoparticles by Thermal Decomposition vol.19, pp.1, 2012, https://doi.org/10.4283/jmag.2014.19.1.005
  3. Exceptional Activity of a Pt-Rh-Ni Ternary Nanostructured Catalyst for the Electrochemical Oxidation of Ethanol vol.2, pp.6, 2015, https://doi.org/10.1002/celc.201402390
  4. Synthesis and Performance of Polyvinylpyrrolidone‐Protected Pd Nanoparticles Supported on TiO2MWCNTs under Protection of PVP for in Alcohols Oxidation in Alkaline Media vol.27, pp.8, 2015, https://doi.org/10.1002/elan.201400723
  5. The Effect of Ternary Catalyst Atomic Ratios (PtRuSn/C and PtRuNi/C) on Ethanol Electrooxidation for Direct Ethanol Fuel Cell vol.659, pp.None, 2012, https://doi.org/10.4028/www.scientific.net/kem.659.247
  6. Optimization of manganese oxide amount on Vulcan XC-72R carbon black as a promising support of Ni nanoparticles for methanol electro-oxidation reaction vol.40, pp.40, 2012, https://doi.org/10.1016/j.ijhydene.2015.08.065
  7. Influence of Metal Oxides on Platinum Activity towards Methanol Oxidation in H2SO4 solution vol.17, pp.7, 2012, https://doi.org/10.1002/cphc.201501072
  8. Hydrothermal Method Using DMF as a Reducing Agent for the Fabrication of PdAg Nanochain Catalysts towards Ethanol Electrooxidation vol.6, pp.7, 2012, https://doi.org/10.3390/catal6070103
  9. A Facile Approach for Synthesis of a Novel WO3-gC3N4/Pt-Sn-Os Catalyst and Its Application for Methanol Electro-oxidation vol.28, pp.4, 2012, https://doi.org/10.1007/s10876-017-1208-y
  10. The Effect of Surface Site Ensembles on the Activity and Selectivity of Ethanol Electrooxidation by Octahedral PtNiRh Nanoparticles vol.129, pp.23, 2012, https://doi.org/10.1002/ange.201702332
  11. The Effect of Surface Site Ensembles on the Activity and Selectivity of Ethanol Electrooxidation by Octahedral PtNiRh Nanoparticles vol.56, pp.23, 2012, https://doi.org/10.1002/anie.201702332
  12. Pt–Ni Octahedra as Electrocatalysts for the Ethanol Electro-Oxidation Reaction vol.7, pp.8, 2012, https://doi.org/10.1021/acscatal.7b01435
  13. Synthesis and characterization of core-shell structured M@Pd/SnO2-graphene [M = Co, Ni or Cu] electrocatalysts for ethanol oxidation in alkaline solution vol.42, pp.8, 2012, https://doi.org/10.1039/c8nj01078a
  14. Investigating the effect of carbon support on palladium-based catalyst towards electro-oxidation of ethylene glycol vol.8, pp.1, 2012, https://doi.org/10.1088/2053-1591/abd9fb