DOI QR코드

DOI QR Code

Growth of very large grains in polycrystalline silicon thin films by the sequential combination of vapor induced crystallization using $AlCl_3$ and pulsed rapid thermal annealing

  • Ahn, Kyung Min (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kang, Seung Mo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ahn, Byung Tae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Published : 2012.11.30

Abstract

Metal-induced crystallization method is one of the favorable non-laser crystallization methods for thin-film transistors in large-area displays. However, it is necessary to reduce metal contamination in the film to lower leakage current for the device applications. A new two-step crystallization method, consisting of a nucleation step by $AlCl_3$ vapor-induced crystallization and a grain growth step by a pulsed rapid thermal annealing, has been proposed to increase the grain size and reduce the residual metal contamination in crystallized poly-Si films. The grain size of the poly-Si film crystallized by the VIC + PRTA two-step crystallization process was as large as $70{\mu}m$. Furthermore, the Al concentration in the poly-Si film was reduced by two orders of magnitude from $1{\times}10^{20}cm^{-3}$ by VIC only process to $1.4{\times}10^{18}cm^{-3}$ by the two-step process. As a result, the minimum leakage current of poly-Si TFTs using the poly-Si film prepared by the two-step process was reduced from $1.9{\times}10^{-10}A/{\mu}m$ to $2.8{\times}10^{-11}A/{\mu}m$ at a drain voltage of 5 V, without carrier mobility degradation.

Keywords

References

  1. C.W. Lin, L.J. Cheng, Y.L. Lu, Y.S. Lee, H.C. Cheng, IEEE Electron Device Lett. 22 (2001) 269.
  2. C.P. Chang, Y.S. Wu, Electron Lett. 44 (2008) 1157. https://doi.org/10.1049/el:20081620
  3. A.T. Voutsas, Appl. Surf. Sci. 208-209 (2003) 250.
  4. A.A. Orouji, M.J. Kumar, IEEE Trans. Electron Devices 6 (2006) 315.
  5. A. Marmostein, A.T. Voutsas, R. Solanki, J. Appl. Phys. 82 (1997) 4303. https://doi.org/10.1063/1.366238
  6. J.H. Eom, K.U. Lee, B.T. Ahn, Electrochem. Solid-State Lett. 8 (2005) G65. https://doi.org/10.1149/1.1857111
  7. K.M. Ahn, S.M. Kang, B.T. Ahn, J. Electrochem. Soc. 158 (2011) H374. https://doi.org/10.1149/1.3551573
  8. O. Nast, S.R. Wenham, J. Appl. Phys. 88 (2000) 124. https://doi.org/10.1063/1.373632
  9. Y. Kuo, P.M. Kozlowski, Appl. Phys. Lett. 69 (1996) 1092. https://doi.org/10.1063/1.117068
  10. Y. Kuo, C.H. Lin, M. Zhu, IEEE PVSC 35 (2010) 3698.
  11. O. Ebil, R. Aparicio, S. Hazra, R.W. Birkmire, E. Sutter, Thin Solid Films 430 (2003) 120. https://doi.org/10.1016/S0040-6090(03)00088-9
  12. T.H. Ihn, T.K. Kim, B.I. Lee, S.K. Joo, Microelectron. Reliab 39 (1999) 53. https://doi.org/10.1016/S0026-2714(98)00160-7
  13. M. Wong, Z.H. Jin, G.A. Bhat, P.C. Wong, H.S. Kwok, IEEE Trans. Electron Device 47 (2000) 1061. https://doi.org/10.1109/16.841241
  14. R.E. Proano, R.S. Misage, D.G. Ast, IEEE Trans. Electron Devices 36 (1989) 1915. https://doi.org/10.1109/16.34270

Cited by

  1. Effect of stacking sequence on crystallization in Al/a-Ge bilayer thin films vol.32, pp.3, 2012, https://doi.org/10.1116/1.4867478
  2. Silicide-Enhanced Rapid Thermal Annealing을 이용한 다결정 Si 박막의 제조 및 다결정 Si 박막 트랜지스터에의 응용 vol.24, pp.9, 2014, https://doi.org/10.3740/mrsk.2014.24.9.443
  3. Investigation of silver-induced crystallization of germanium thin films fabricated on different substrates vol.419, pp.None, 2012, https://doi.org/10.1016/j.jcrysgro.2015.02.078