Changes of Soil Biological Properties as Affected by Crop Rotation of Rye and Hairy Vetch in Welsh Onion and Red Pepper Cultivation

파와 고추재배지에서 호밀과 헤어리베치의 윤작에 따른 토양 생물상의 변화

  • Lee, Sang-Min (Organic Agriculture Division, National Academy of Agricultural Science) ;
  • Lee, Sang-Bum (Organic Agriculture Division, National Academy of Agricultural Science) ;
  • Lee, Byung-Mo (Organic Agriculture Division, National Academy of Agricultural Science) ;
  • Cho, Jung-Lai (Organic Agriculture Division, National Academy of Agricultural Science) ;
  • An, Nan-Hee (Organic Agriculture Division, National Academy of Agricultural Science) ;
  • Lee, Youn (Organic Agriculture Division, National Academy of Agricultural Science) ;
  • Yun, Hong-Bae (Soil & Fertilizer Management Division, National Academy of Agricultural Science) ;
  • Kuk, Yong-In (Department of Development in Resource Plants, Sunchon National University) ;
  • Choi, Hyun-Sug (Organic Agriculture Division, National Academy of Agricultural Science)
  • 이상민 (국립농업과학원 유기농업과) ;
  • 이상범 (국립농업과학원 유기농업과) ;
  • 이병모 (국립농업과학원 유기농업과) ;
  • 조정래 (국립농업과학원 유기농업과) ;
  • 안난희 (국립농업과학원 유기농업과) ;
  • 이연 (국립농업과학원 유기농업과) ;
  • 윤홍배 (국립농업과학원 토양비료관리과) ;
  • 국용인 (순천대학교 자원식물개발학과) ;
  • 최현석 (국립농업과학원 유기농업과)
  • Published : 2012.12.31

Abstract

The study was conducted to evaluate the effects of welsh onion or red pepper plants grown under organically managed plots (OF) rotating rye or/and hairy vetch vs conventionally managed plot (CF) on soil biological properties. Fruit marketable yield of the onion or red pepper was higher for CF compared to OF due to the higher occurrence of disease and insect observed in OF. However, there were not significantly different fruit yield between the both CF and OF plots. OF plots had approximately 10 to 40 times higher microbial biomass and two times higher diversity of faunula and number of faunula in soil compared to the CF plots, which were, especially, higher for OF-pepper plots rotating hairy vetch. However, the soil biological properties were not significantly different between the CF- and OF-welsh onion plots.

본 시험은 파와 고추재배지에서 호밀과 헤어리베치를 휴한기에 윤작한 유기재배구와 관행재배구 간의 토양생물상에 어떠한 차이가 있는지를 비교하기 위하여 수행되었다. 1. 파와 고추의 상품성 수량은 관행에서 유기재배구 보다 다소 높았는데, 이는 병충해 발생에 기인한 것으로 판단된다. 하지만 두 재배구간에 통계적으로 유의성 있는 수량 차이는 나타나지 않았다. 2. 고추 재배지에서는 유기재배구가 관행재배구 보다 토양미 생물체량을 10 ~ 40배 전후, 미소동물 군집수와 종다양성을 2배 전후 증가시켰다. 특히 헤어리베치를 윤작한 유기재배구에서 토양미생물체량과 미소동물 수는 더 크게 증가하였다. 3. 파 재배지에서는 관행과 유기재배구 간에 토양 생물상에 별다른 차이는 없었다.

Keywords

References

  1. Anderson, J.P.E. and K.H. Domsch. 1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biol. Biochem. 21 : 471-479. https://doi.org/10.1016/0038-0717(89)90117-X
  2. Brookes, P.D., A. Landman, G. Pruden, and D.S. Jenkinson. 1985. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17 : 837-842. https://doi.org/10.1016/0038-0717(85)90144-0
  3. Fageria, N.K., V.C. Baligar, and B.A. Bailey. 2005. Role of cover crops in improving soil and row crop productivity. Commun. Soil Sci. Plant Anal. 36 : 2733-2757. https://doi.org/10.1080/00103620500303939
  4. Gallardo, A. and W.H. Schlesinger. 1990. Estimating microbial biomass nitrogen using the fumigation-incubation and fumigation extraction methods in warm-temperate forest soil. Soil Biol. Biochem. 22 : 927-932. https://doi.org/10.1016/0038-0717(90)90131-I
  5. Kumar, K. and K.M. Goh. 1999. Crop residues and management practices: effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. Adv. Agron. 68 : 197-319.
  6. Lee, S.M., B.M. Lee, Y. Lee, Y.H. Lee, J.K. Sung, H.B. Yun, and H.S. Choi. 2012a. Effect of green-manure crop rotation on weed control. Kor. J. Organic Agric. 20 : 201-209.
  7. Lee, S.M., H.B. Yun, M. Gu, J.K. Sung, Y. Lee, Y.H. Lee, H.J. Jee, and H.S. Choi. 2012b. Soil nutrients and production in red pepper plants as affected by hairy vetch or rye rotation. J. Hort. Soc. Biotechnol. Under review.
  8. Mader, P., A. Fliessbach, D. Dubois, L. Gunst, P. Fried, and U. Niggli. 2002. Soil Fertility and biodiversity in organic farming. Science 296 : 1694-1697. https://doi.org/10.1126/science.1071148
  9. Sainju, U.M., W.F. Whitehead, and B.P. Singh. 2005. Biculture legume-cereal cover crops for enhanced biomass yield and carbon and nitrogen. Agron. J. 97 : 1403-1412. https://doi.org/10.2134/agronj2004.0274
  10. Tian, G., L. Brussaard, and B.T. Kang. 1993. Biological effects of plant residues with contrasting chemical compositions under humid tropical conditions: Effects on soil fauna. Soil Biol. Biochem. 25 : 731-737. https://doi.org/10.1016/0038-0717(93)90114-Q
  11. Vance, E.D., P.C. Brookes, and D.S. Jenkinson. 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19 : 703-707. https://doi.org/10.1016/0038-0717(87)90052-6
  12. 농업과학기술원. 1999a. 작물별 시비처방기준. 농업과학기술원, 수원, 한국.
  13. 농업과학기술원. 1999b. 친환경농업을 위한 가축분뇨 퇴비.액비 제조와 이용. 농업과학기술원, 수원, 한국. pp. 100-146.
  14. 농림수산식품부. 2011. 2011-2015 제3차 친환경농업 육성 5개년 계획. 농림수산식품부, 서울, 한국. pp. 1-124.
  15. 농촌진흥청. 2003. 농업과학기술 연구조사분석기준. 발간등록번호 : 11-1390000-001274-01. 농촌진흥청, 수원, 한국. pp. 1-838.
  16. 이상범, 임동규, 권순익, 고문환, 성기석. 2003. 토양서식 미소동 물 분리를 위한 개량된 Tullgren 장치. 한국토양비료학회 추계 학술회의. p. 97.