Production of Bio-ethanol from Red Algae by Acid Hydrolysis and Enzyme Treatment

산 및 효소 가수분해를 이용한 홍조류로부터 바이오 에탄올 생산

  • Choi, Soo-Jeong (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Lee, Sung-Mok (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, College of Medical and Life Science, Silla University)
  • 최수정 (신라대학교 의생명과학대 생명공학과) ;
  • 이성목 (신라대학교 의생명과학대 생명공학과) ;
  • 이재화 (신라대학교 의생명과학대 생명공학과)
  • Published : 2012.06.10

Abstract

Bio-ethanol production research using various material has been problemed for solving problems of environment pollution caused by fossil fuels. Red-algae consists of agar, carrageenan, and porphyran. If it is treated by acid, it is able to change useful bio-mass for bio-ethanol. In this study, we found an optimal condition for bio-ethanol production from acid hydrolysate in red-algae. To produce bio-ethanol, Saccharomyces cerevisiae KCCM1129 inoculated to acid hydrolysate of Gelidium amansii. The optimal condition for Gelidium amansii hydrolysis was found to be 30 min reaction at $H_2SO_4$ concentration of 1.5% and $121^{\circ}C$. At this condition, its produced to 7.04 g/L galactose and 1.94 g/L glucose. And acetic acid concentration of 2.0% in agar produced 0.75 g/L galactose. In contrast, Pachymeniopis elliptica was treated with $H_2SO_4$concentration of 1.5%, it produced 6.38 g/L galactose. And Pachymeniopis elliptica treated with acetic acid concentration of 2% produced 0.368 g/L galactose. The optimal condition of ethanol production was found to be 96 h reaction at $H_2SO_4$concentration of 1.0% and $30^{\circ}C$, which produced 3.77 g/L ethanol.

화석연료로 인한 환경오염 등의 문제를 해결하기 위해서 다양한 원료를 이용하여 바이오 에탄올 생산에 대한 연구가 진행되고 있다. 해조류 중에 홍조류는 agar, carrageenan, porphyran으로 구성되어 있어 산 처리를 통해 바이오에탄올 생산에 유용한 바이오매스로 전환이 가능하다. 본 연구는 홍조류의 가수분해물을 이용하여 바이오에탄올 생산의 최적 조건을 찾으려고 한다. 바이오에탄올 생산하기 위해 전처리 된 우뭇가사리에 Saccharomyces cerevisiae KCCM112를 접종해 발효하였다. 우뭇가사리 가수분해의 최적조건은 1.5% $H_2SO_4$$121^{\circ}C$에서 30 min 반응시켰을 때 7.04 g/L의 galactose와 1.94 g/L의 glucose가 생산되었다. 그리고 $CH_3COOH$의 경우 2.0% 농도로 처리하였을 때, galactose 0.75 g/L가 생산되었다. 이와 반대로 도박에서는 $H_2SO_4$1.5%를 처리하였을 때 galactose를 6.38 g/L 생산하였으며, $CH_3COOH$을 처리했을 때 0.368 g/L이 생산되었다. 우뭇가사리에서 에탄올 생산은 1.0% $H_2SO_4$$121^{\circ}C$에서 30 min 간 처리하였을때 가장 높았으며, 96 h 배양하였을 때 3.77 g/L의 에탄올을 생산했다.

Keywords

References

  1. H.-Y. Kim, E. S. Lee, W. S. Kim, D.-J. Kim, and B. S. Ahn, Clean Technol., 17, 156 (2011).
  2. J.-W. Lee, H.-Y. Kim, T. W. Jeffries, and I.-G. Choi, Mokchae Konghak, 38, 561 (2010)
  3. D.-S. Kim, H.-R. Kim, J.-H. Kim, and J.-H. Pyeun, J. Kor. Fish. Soc., 33, 70 (2000).
  4. J.-R. Do, Y.-J. Nam, J.-H. Park, and J.-H. Jo, J. Kor. Fish. Soc., 30, 428 (1997).
  5. E. J. Song, A. R. Kim, M. J. Kim, S. Y. Lee, K. B. W. R. Kim, J. G. Park, J. W. Lee, M. W. Byun, and D. H. Ahn, Food Eng. Progr., 12, 58 (2008).
  6. S.-M. Kim, S.-M. Park, H.-M. Choi, and K.-T. Lee, J. Kor. Fish. Soc., 32, 495 (1999).
  7. J.-H. Park and J.-G. Koo, J. Kor. Fish. Soc., 41, 409 (2008).
  8. S.-M. Lee and J.-H. Lee, Appl. Chem. Eng., 21, 154 (2010).
  9. S. J. Horn, I. M. Aasen, and K. Ostgaard, J. Ind. Microbiol. Biotechnol., 25, 249 (2000). https://doi.org/10.1038/sj.jim.7000065
  10. J. C. Lee, J. H. Kim, H. S. Park, and D. W. Park, J. of KSEE, 609 (2010).
  11. J.-H. Kim and M.-H. Yoon, J. Appl. Biol. Chem, 54, 41 (2011). https://doi.org/10.3839/jabc.2011.007
  12. S.-M. Lee, B. J. Yu, Y. M. Kim, S.-J. Choi, J.-M. Ha, and J.-H. Lee, J. Korean Ind. Eng. Chem., 20, 290 (2009).
  13. G. W. Choi, M. H. Han, and Y. Kim, Korean J. Biotechnol. Bioeng, 23, 276 (2008).
  14. H. Jung, Y.-S. Choi, D.-R. Yang, O.-S. Joo, and K.-D. Jung, Clean Technol., 14, 129 (2008).
  15. M. G. Lee, D.-H. Cho, Y.-H. Kim, J. W. Lee, J. H. Lee, S. W. Kim, J. H. Cho, D. H. Lee, S. Y. Kim, and C. H. Park, KSBB J., 24, 439 (2009).
  16. J.-H. Yeon, H.-B. Seo, S.-H. Oh, W.-S. Choi, D. H. Kang, H.-Y. Lee, K.-H. Jung, KSBB J., 25, 283 (2010).
  17. D.-G. Kim, E.-Y. Kim, Y.-R. Kim, J. K. Kim, H.-S. Lee, and I.-S. Kong, J. Life Sci., 21, 68 (2011). https://doi.org/10.5352/JLS.2011.21.1.68
  18. H. S. Jung, P.-J. Seong, A.-R. Go, S. J. Lee, S. W. Kim, S, O. Han, J. H. Cho, D. H. Cho, Y. H. Kim, and C. H. Park, KSBB J., 26, 223 (2011).
  19. J. E. Kim, Y. H. Yoon, T. S. Shin, M. Y. Kim, H. S. Byun, S. J. Oh, and H. J. Seo, KSBB J., 26, 317 (2011).
  20. O.-S. Lee, S.-Y. Jang, and Y.-J. Jeong, J. Korean Soc. Food Sci. Nutr., 32, 181 (2003). https://doi.org/10.3746/jkfn.2003.32.2.181
  21. J.-Y. Park, C.-S. Hong, J.-H. Han, H.-W. Kang, B.-W. Chung, G.-W. Choi, and J. H. Min, Korean Chem. Eng. Res., 49, 105 (2011).
  22. S. J. Park, S.-G. Hong, K.-K. Kang, and Y.-K. Kim, Appl. Chem. Eng., 22, 562 (2011).
  23. J. E. Lee, S.-E. Lee, W. Y. Choi, D. H. Kang, H.-Y. Lee, and K.-H. Jung, Kor. J. Mycol., 39, 243 (2011). https://doi.org/10.4489/KJM.2010.39.3.243
  24. B.-T. Yoon, Y.-W. Kim, K.-W. Chung, and J.-S. Kim, Appl. Chem. Eng., 22, 336 (2011).