Wavelength band Translation Method of Infrared Image

적외선영상의 파장대역 변환 방법

  • 안상호 (인제대학교 전자공학과) ;
  • 김영춘 (영동대학교 정보통신보안학과)
  • Published : 2012.07.31

Abstract

The modern infrared (IR) imaging systems mainly use one or more wavelength bands in the use of short wavelength IR (SWIR), middle wavelength IR (MWIR), or long wavelength IR (LWIR) bands. In order to simulate these IR imaging systems, the respective images taken in these three wavelength bands are required. This paper presents a band transformation method that can transform an arbitrary wavelength band to the other one. Based on the Planck's radiation law, the radiance of each wavelength-band with regard to its temperatures is obtained. And then, the proposed band transformation function is derived from the optical feature that gray levels in IR image is directly proportional to the radiance of wavelength band. By using the proposed band transformation function, one band's image can be transformed to the other band image. The proposed band transformation method is demonstrated through the simulation. In this simulation, IR target image is generated by RadThermIR software and its background image is acquisited from a thermal imaging device.

최근의 적외선영상시스템들은 단파적외선(SWIR)대역, 중적외선(MWIR)대역 또는 원적외선(LWIR)대역을 한개 또는 그 이상을 주로 사용한다. 이와 같은 시스템을 시뮬레이션하기 위해서는 3개 파장대역의 영상이 요구된다. 본 연구에서는 임의 파장대역 중 하나의 대역의 영상으로부터 다른 대역의 IR영상으로 변환하는 방법을 제안한다. 흑체의 복사이론으로부터 온도에 따른 각 파장대역의 복사휘도를 구하고, 복사휘도는 영상의 회색준위와 비례한다는 점을 이용하여 영상의 변환함수(transformation function)가 유도된다. 이의 변환함수를 이용하여 하나의 대역영상은 다른 대역의 영상으로 변환된다. 제안방식의 타당성은 시뮬레이션을 통해 확인하며, IR표적영상은 RadThermIR 소프트웨어를 사용하여 발생시키고 IR배경 영상은 열상장비로 획득한 것을 사용한다.

Keywords

References

  1. R. G. Driggers, P. Cox, and T. Edwards, "Introduction to infrared and electro-optical systems", Artech House, 1998.
  2. R. A. Jacobs, "Thermal Infrared Characterization of Ground Targets and Backgrounds", SPIE Optical Engineering Press, 1996.
  3. D. H. Pollock, "Countermeasure systems, The Infrared & Electro-Optical Systems Handbook", SPIE Optical Engineering Press, 1993.
  4. A. R. Jha, "Infrared Technology: Applications to electro-optics, photonic devices, and sensors", John-Wiley & Sons, 2000.
  5. W. Yu, Q. Peng, H. Tu, and Z. Wang, "An infrared image synthesis model based on infrared physics and heat transfer" International Journal of Infrared and Millimeter Waves, Vol. 19, No. 12, pp. 1661-1669, Dec. 1998. https://doi.org/10.1023/A:1021715210244
  6. C. X. Pan, J. Z. Zhang, and Y. Shan, "Modeling and analysis of helicopter thermal and infrared radiation", Chinese Journal of Aeronautics, Vol. 24, pp. 558-567, March 2011. https://doi.org/10.1016/S1000-9361(11)60065-4
  7. J. Lu and Q. Wang, "Aircraft-skin infrared radiation characteristics modeling and analysis", Chinese Journal of Aeronautics, Vol. 22, No. 5. pp. 493-497, Feb. 2009. https://doi.org/10.1016/S1000-9361(08)60131-4
  8. R. Dulski, T. Sosnowski, and, H. Polakowski, "A method for modelling IR image of sky and clouds", Infrared Physics & Technology, Vol. 54, pp. 53-60, March 2011. https://doi.org/10.1016/j.infrared.2010.12.011
  9. H. K. Kim, S. H. Han, G. P. Hong, and J. S. Choi, "Simulation of reticle seekers using the generated thermal images", Proceedings of IEEE Asia Pacific Conf. on Circuits and Systems, pp. 183-186, Nov. 1996.
  10. L. J. Cox, M. A. Batten, S. R. Carpenter, and P. A. B. Saddleton, "Modelling counter-measures to imaging infrared seekers", Proceedings of SPIE, Vol. 5615, pp. 112-119, Dec. 2004.
  11. C. J. Wllers and M. S. Wheeler, "The validation of models in an imaging infrared simulation", Microwave and Optoelectronics Conference, pp. 250-254, Nov. 2007.
  12. C. J. Wllers and J. S. H. van den Bergh, "Optronics sensor development using an imaging simulation system", Electronics, Communications and Photonics Conference, pp. 1-6, April 2011.
  13. M. Petersson, "Real-time DIRCM system modeling", Proceedings of SPIE, Vol. 5615, pp. 149-160, Dec. 2004.
  14. 김병익, 배태욱, 김영춘, 안상호, 김덕규, "적외선영상에서 다층구조요소 NWTH변환을 이용한 소형표적 검출방법", 한국정보기술학회 논문지, 제 9권, 제 7호, pp. 57-64, 2011년 7월.