Effects of Edge Area and Burn Severity on Early Vegetation Regeneration in Damaged Area

가장자리와 산불피해강도가 산불피해지역 초기식생재생에 미치는 효과

  • Lee, Joo-Mee (Graduate Program, Department of Environmental Science, Konkuk University) ;
  • Won, Myoung-Soo (Division of Forest disaster management, Korea Forest Research Institute) ;
  • Lim, Joo-Hoon (Division of Forest restoration, Korea Forest Research Institute) ;
  • Lee, Sang-Woo (Department of Environmental Science, Konkuk University)
  • 이주미 (건국대학교 대학원 환경과학과) ;
  • 원명수 (국립산림과학원 산림방재관리과) ;
  • 임주훈 (국립산림과학원 산림복원연구과) ;
  • 이상우 (건국대학교 환경과학과)
  • Published : 2012.03.31

Abstract

The edge area with burn severity is known as significant factor that has great effects on the ecosystem recovery. However, there is little study on the edge area and its effects in the South Korea. Thus, this study aimed to analyze immediate responses of vegetation following forest fires due to combined effect of burn severity and edge-interior effect. Burn Severity (BS), or ${\Delta}NBR$ values were computed using satellite images of pre and post-forest fire in Samcheock areas. The burn forest was classified 231 $1-km^2$ girds and these grids were further reclassified into 4 groups by BS type (low BS and high BS areas) and forest areas (edge areas and interior areas). These four groups of grids including low BS-interior (group A), low BS-edge (group B), high BS-interior (group C) and high BS-edge (group D). Post-fire vegetation responses measured with (${\Delta}NDVI$) among four groups were then compared and tested by T-test. The results indicated that group C (${\Delta}NDVI$=0.047) and D (${\Delta}NDVI$ = 0.059) showed considerably greater vegetation regeneration than those of low BS areas including group A (${\Delta}NDVI$ = -0.039) and group B (${\Delta}NDVI$ = -0.036). It was also observed that edges areas showed greater vegetation regeneration than interior areas when BS is the same. Group B (${\Delta}NDVI$ = -0.036) showed greater (${\Delta}NDVI$) values than group A (${\Delta}NDVI$ = -0.039) in low BS condition. Similar relationship is observed between group C and group D in high BS condition. Thus adequate restoration practices for burned areas might need to pay close attention to interior areas with low BS to minimize the secondary damages and to rehabilitate the burned forests.

산불피해강도와 함께 가장자리 관련지역은 생태계회복에 큰 영향을 주는 것으로 알려져 있으나 연구가 미미한 상황이다. 따라서 이 연구는 산불피해강도와 가장자리 효과의 복합적 영향에 의한 산불 후 식생의 초기 반응을 분석하는 것을 목적으로 한다. 산불피해강도 즉 ${\Delta}NBR$는 삼척지역의 산불전과 후의 인공위성 이미지를 이용하여 계산되었다. 산불피해지는 231개의 $1-km^2$ 격자 단위로 구분하였으며, 격자들은 산불피해강도와 가장자리 지역의 포함 유무에 따라 4개의 그룹으로 재분류되었다. 4개의 그룹은 저강도 산불피해강도의 산불피해지 내부지역(그룹 A), 저강도 산불피해강도의 산불피해지 가장자리 지역(그룹 B), 고강도 산불피해강도의 산불피해지 내부지역(그룹 C), 고강도 산불피해강도의 산불피해지 가장자리 지역(그룹 D)을 포함한다. 4개 그룹 간 식생재생변화(${\Delta}NDVI$)는 T-test로 비교되었으며, 고강도 강도지역의 그룹 C(${\Delta}NDVI$ = 0.047)와 D(${\Delta}NDVI$ = 0.059)가 저강도 연소강도지역의 그룹A(${\Delta}NDVI$ = -0.039)와 B(${\Delta}NDVI$ = -0.036)에 비해 상당히 높은 식생재생을 보였다. 또한 동일 산불피해강도 지역에서 산불피해지 가장자리 지역이 내부지역에 비해 높은 식생재생변화가 관찰되었다. 즉 산불피해지 가장자리 지역의 그룹 B(${\Delta}NDVI$ = -0.036)와 D(${\Delta}NDVI$ = 0.059)는 산불피해지 내부지역의 그룹 A(${\Delta}NDVI$ = -0.039)와 C(${\Delta}NDVI$ = 0.047)에 비해 높은 식생재생변화를 보여주었다. 따라서 산불피해로 인한 이차적 피해를 최소화하고 연소된 산림의 회복을 위해 산불피해지 내부지역에 대한 적절한 회복전략이 요구된다.

Keywords

References

  1. 김영표. 2008. 지형에 따른 정규식생비수 분포특성 연구. 한국산림휴양학회지 12(4): 47-5.
  2. 원명수, 구교상, 이명보, 손영모. 2008. LandsatTM영상 자료를 활용한 삼척 대형산불 피해지의 비이산화탄소 온실가스 배출량 추정. 한국농림기상학회지 10(1): 17-24.
  3. 이규송, 정연숙, 김석철, 신승숙, 노찬호, 박상덕. 2004. 동해안 산불 피해지에서 산불 후 경과년수에 따른 식생 구조의 발달. 한국생태학회지 27: 99-106.
  4. 이병두, 송정은, 이명보, 정주상. 2008. 한국의 생태지역별 산불특성과 임산분포패턴과의 관계. 한국임학회지 97(1): 1-9.
  5. 이상우, 임주훈, 원명수, 이주미. 2009. 산림 공간구조 특성과 산불 산불피해강도와의 관계에 관한 연구. 한국환경복원녹화학회지 12(5): 1-11.
  6. 환경부. 2002. 동해안 산불지역 생태계 변화 및 복원기법 연구. pp. 244.
  7. Belda, F. and Melia, J. 2000. Relationships between climatic parameters and forest vegetation : application to burned area in Alicante (Spain). Forest Ecology and Management 135: 195-204. https://doi.org/10.1016/S0378-1127(00)00310-8
  8. Bradfield, G.E. and Scagel, A. 1984. Correlations among vegetation strata and environmental variables in subalpine spruce-fir forests. southeastern British Columbia. Vegetation 55: 105-114.
  9. Brewer, C.K., Winne, J.C., Redmond, R.L., Opitz, D.W. and Mangrich, M.V. 2005. Classifying and mapping wildfire severity: A comparison of methods. Photogrammetric Engineering and Remote Sensing 71: 1311-1320.
  10. Brothers, T.S. and Spingarn, A. 1992. Forest fragmentation and alien plant invasion of central Indiana oldgrowth forests. Conservation Biology 6: 91-100. https://doi.org/10.1046/j.1523-1739.1992.610091.x
  11. 11. Cadenasso, M.L., Traynor, M.M. and Pickett, S.T.A. 1997. Functional location of forest edges: gradients of multiple physical factors. Canadian Journal of Forest Research 27: 774-782. https://doi.org/10.1139/x97-013
  12. Camargo, J.L.C. and Kapos, V. 1995. Complex edge effects on soil moisture and microclimate in central Amazonian forest. J. Tropical Ecology 11: 205-221. https://doi.org/10.1017/S026646740000866X
  13. Chappell. C.B. and Agee, J.K. 1996. Fire severity and tree seedling establishment in Abies magnifica forests, southern Cascades, Oregon. Ecological Applications 6: 628-640. https://doi.org/10.2307/2269397
  14. Chen, J., Franklin, J.F. and Spies, T.A. 1990. Microclimatic pattern and basic biological responses at the clearcut edges of old-growth Douglas-fir stands. Northwest Environmental Journal 6: 424-425.
  15. Cid-Benevento, C.R. 1987. Relative effects of light, soil, moisture availability and vegetation size on the sex ratio of two monoecious woodland annual herds, Acalypha rhomboidea (Euphorbiac).
  16. Clements, F.E. 1907. Plant physiology and ecology. Henry Holt, New York, U.S.A.
  17. Cocke, A.E., Fule, P.A. and Crouse, J.E. 2005. Comparison of burn severity assessments using differenced normalized burn ratio and ground data. Wildland Fire 14: 189-198. https://doi.org/10.1071/WF04010
  18. Collins, B.M., Kelly, M., van Wagtendon, J.W. and Stephens, S.L. 2007. Spatial patterns of large natural fires in Sierra Nevada wilderness areas. Landscape Ecology 22: 545-557. https://doi.org/10.1007/s10980-006-9047-5
  19. Davies-Colley, R.J., Payne, G.W. and van Elswijk, M. 2000. Microclimate gradients across a forest edge. N.Z.J. Ecol., 24: 111-121.
  20. DeBano, L.F., Neary, D.G. and Ffolliott, P.F. 1998. Fire's effects on ecosystems. John Wiley and Sons: New York, NY.
  21. deMaynadier, P.G. and Hunter, Jr., M.L. 1998. Effects of silvicultural edges on the distribution and abundance of amphibians in Maine. Conservation Biology 340-352.
  22. Doerr, S.H., Shakesby, R.A., Blake, W.H., Chafer, C.J., Humphreys, G.S. and Wallbrink, P.J. 2006. Effects of differing wildfire severities on soil wettability and implications for hydrological response. Journal of Hydrology 319: 295-311. https://doi.org/10.1016/j.jhydrol.2005.06.038
  23. Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z., Quayle, B. and Howard, S. 2007, A project for monitoring trends in burn severity. Fire Ecology 3: 3-21.
  24. Epting, J., Verbyla, D. and Sorbel, B. 2005. Evaluation of remotely sensed indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sensing of Environment 96: 328-339. https://doi.org/10.1016/j.rse.2005.03.002
  25. Esseen, P.A. and Renhorn, K.E. 1998. Edge effects on an epiphytic lichen in fragmented forests. Conservation Biology 12: 1307-1317. https://doi.org/10.1046/j.1523-1739.1998.97346.x
  26. Forman, R.T.T., Sperling, D., Bissonette, J.A., Clevenger, A.P., Cutshall, C.D., Dale, V.H., Fahrig, L., France, R., Goldman, C.R., Heanue, K., Jones, A.J., Swanson, F.J., Turrentine, T. and Winter, T.C. 2002. Road Ecology: Science and Solutions. Island Press, Washington, DC, Washington, U.S.A.
  27. Granstrom, A. 1982. Seed banks in five boreal forest stands originating between 1810 and 1963. Canadian Journal Ecology 75: 321-331.
  28. Gustafson, E.J., Zollner, P.A., Sturtevant, B.R., He, H.S. and Mladenoff, D.J. 2004. Influence of forest management alternatives and land type on susceptibility to fire in northern Wisconsin, U.S.A. Landscape Ecology 19: 327-342.
  29. Hall, Dorothy, K., Ormsby, James, P., Larry, Johnson and Jerry, Brown. 1980. Landsat Digital analysis of the Initial Recovery of Burned Tundra at Kokolik River, Alaska. Remote sensing of Environment 10: 263-272. https://doi.org/10.1016/0034-4257(80)90086-3
  30. Harper, K., Lesieur, D., Bergeron, Y. and Drapeau, P. 2004. Forest structure and composition at young fire and cut edges in black spruce boreal forest. Canadian Journal of Forest Research 34: 289-302. https://doi.org/10.1139/x03-279
  31. Harper, K.A., Macdonald, S.E., Burton, P.J., Chen, J.Q., Brosofske, K.D., Saunders, S.C., Euskirchen, E.S., Roberts, D., Jaiteh, M.S. and Esseen, P. 2005. Edge influence on forest structure and composition in fragmented landscapes. Conservation Biology 19: 768-782. https://doi.org/10.1111/j.1523-1739.2005.00045.x
  32. Hilmo, O. and Holien, H. 2002. Epiphytic lichen response to the edge environment in a boreal Picea abies forest in central Norway. Bryologist 105: 48-56. https://doi.org/10.1639/0007-2745(2002)105[0048:ELRTTE]2.0.CO;2
  33. Jain, T.B. and Graham, R.T. 2004. Is forest structure related to fire severity? Yes, no, and maybe: Methods and insights in quantifying the answer. USDA Forest Service Proceedings RMRS-P 34: 217-234.
  34. Jakubauskas, M.E., Lulla, K.P. and Mausel, P.W. 1990. Assessment of vegetation change in a fire-altered forest landscape. Photogrammetric Engineering and Remote Sensing 56: 371-377.
  35. Jules, E.S. 1998. Habitat fragmentation and demographic change for a common plant: trillium in old-growth forest. Ecology, 79: 1645-1656. https://doi.org/10.1890/0012-9658(1998)079[1645:HFADCF]2.0.CO;2
  36. Kapos, V. 1989. Effects of isolation on the water status of forest patches in the Brazilian Amazon. J. Tropical Ecology 5: 173-185. https://doi.org/10.1017/S0266467400003448
  37. Key, C.H. and Benson, N.C. 2002. Fire effects monitoring and inventory protocol-landscape assessment. USDA Forest Service Fire Science Laboratory, Missoula, MT.
  38. Key, C.H. and Benson, N.C. 2006. Landscape assessment: sampling and analysis methods. USDA Forest Service, Rocky Mountain Research Station General Technical Report RMRS-GTR-164-CD(Ogden, UT).
  39. Larrivee, M., Fahrig, L. and Drapeau, P. 2005. Effects of a recent wildfire and clearcuts on ground-dwelling boreal forest spider assemblages. Canadian Journal of Forest Research 35: 2575-2588. https://doi.org/10.1139/x05-169
  40. Laughlin, D.C., Bakker, J.D., Stoddard, M.T., Daniels, M.L., Springer, J.D., Gildar, C.N., Green, A.M. and Covington, W.W. 2004. Toward reference conditions: wildfire effects on flora in an old-growth ponderosa pine forest. Forest Ecology and Management 199: 137-152. https://doi.org/10.1016/j.foreco.2004.05.034
  41. Lentile, L.B., Holden, Z.A., Smith, A.M.S., Falkowski, M.J., Hudak, A.T., Morgan,P., Lewis, S.A., Gessler, P.E. and Benson., N.C. 2006. Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire 15(3): 319-345. https://doi.org/10.1071/WF05097
  42. Lloret, F., Calvo, E., Pons, X. and Díaz-Delgado, R. 2002. Wildfires and landscape patterns in the eastern Iberian Peninsula. Landscape Ecology 17(8): 745-759. https://doi.org/10.1023/A:1022966930861
  43. Lovejoy, T.E., Bierregaard, R.O., Rylands, A.B., Malcolm, J.R., Quintela, C.E., Harper, L.H., Brown, K.S., Powell, A.H., Powell, G.V.N., Schubart, H. and Hays, M. 1986. Edge and other effects of isolation on Amazon forest fragments. pp. 257-85. In : Soule, M.E, ed. Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland.
  44. Lyon, L.J. and Stickney, P.F. 1976. Early vegetal succession following large northern Rocky Mountain wildfires. Proceedings Montana Tall Timbers Fire Ecology Conference and Fire and Land Management Symposium 14: 355-375.
  45. Matlack G.R. 1993. Microenvironment variation within and among forest edge sites in the eastern United-States. Biological Conservation 66: 185-194. https://doi.org/10.1016/0006-3207(93)90004-K
  46. Miller, J.D. and Yool, S.R. 2002. Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data. Remote Sensing of Environment 82: 481-496. https://doi.org/10.1016/S0034-4257(02)00071-8
  47. Moreno, J.M. and Oechel, W.C. 1989. A Simple Method for estimating fire intensity after a burn in California Chaparral. Acta Ecologica (Ecologia plantarum) 10: 57-68.
  48. Morgan, P. and Neuenschwander, L.F. 1988. Shrub response to high and low severity burns. Western Journal of Applied Forestry 3(1): 5-9.
  49. Murcia, C. 1995. Edge effects in fragmented forests implications for conservation. Trends in Ecology and Evolution 10: 58-62. https://doi.org/10.1016/S0169-5347(00)88977-6
  50. Pardini, R. 2004 Effects of forest fragmentation on small mammals in an Atlantic Forest landscape. Biodiversity and Conservation, 13: 2567-2586.
  51. Perez, B. and Moreno, J. 1998. Methods for quantifying fire severity in shrubland-fires. Plant Ecology 139: 91-101. https://doi.org/10.1023/A:1009702520958
  52. Rheault, H., Drapeau, P., Bergeron, Y. and Esseen, P.A. 2003. Edge effects on epiphytic lichens in managed black spruce forests of eastern North America. Canadian Journal of Forest Research 33: 23-32. https://doi.org/10.1139/x02-152
  53. Ries, L., Fletcher, R.J., Battin, J. and Sisk, T.D. 2004. Ecological responses to habitat edges: mechanisms, models, and variability explained. Annual Review Ecology Evolution and Systematics 35: 491-522. https://doi.org/10.1146/annurev.ecolsys.35.112202.130148
  54. Rogan, J. and Yool, S.R. 2001. Mapping fire-induced vegetation depletion in the Peloncillo Mountains, Arizona and New Mexico. International Journal of Remote Sensing 22: 3101-3121. https://doi.org/10.1080/01431160152558279
  55. Rouse, J.W., Haas, R.S., Schell, J.A. and Deering, D.W. 1973, Monitoring vegetation systems in the Great Plains with ERTS. Proceedings, 3rd Earth Resources Technology Satellite-1 Symposium 1: 48-62.
  56. Sugihara, N.G., van Wagtendonk, J.W., Shaffer, K.E., Fites-Kaufman, J. and Thode. A.E. 2006. Fire in California's ecosystems. University of California Press, Berkeley, USA.
  57. Thomas, A.W. and Patrick, H.B. 1999. A comparison of fire intensity levels for stand replacement of table mountain pine (Pinus pngens Lamb.). Forest Ecology and Mangement 113: 155-166. https://doi.org/10.1016/S0378-1127(98)00422-8
  58. Thomas, J.W., Maser, C. and Rodiek, J.E. 1979. Edges. pp. 48-59. In : J.W. Thomas, ed. Wildlife habitats in managed forest: the Blue Mountains of Oregon and Washington. USDA Forest Service Agricultural Handbook Number 553.
  59. Tucker, C.J., Dregne, H.E. and Newcomb, W.W. 1991. Expansion and contraction of the Sahara Desert from 1980 to 1990. Science 253: 299-300. https://doi.org/10.1126/science.253.5017.299
  60. Tucker, C.J., Holben, B.N., Elgin, J.H. and McMurtry, J.E. 1981. Remote sensing of total dry matter accumulation in winter wheat. Remote Sensing of the Environment 11: 171-189.
  61. Tucker, C.J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8: 127-150. https://doi.org/10.1016/0034-4257(79)90013-0
  62. Turner, M.G., Hargrove, W.W., Gardner, R.H. and Romme, W.H. 1994. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. Journal of Vegetation Science 5: 59-77.
  63. Voller, J. and Harrison, S. 1998. In : J. Voller., S. Harrison. ed. Conservation Biology Principles for Forested Landscapes. UBC Press, Vancouver, p. 260.
  64. Wales, B.A. 1972. Vegetation analysis of north and south edges in a mature oak-hickory forest. Ecological Monographs 42: 451-471. https://doi.org/10.2307/1942167
  65. Wang, G.G. 2002. Fire severity in relation to canopy composition within burned boreal mixewood stands. Forest Ecology and Management 163: 85-92. https://doi.org/10.1016/S0378-1127(01)00529-1
  66. White, J.D., Ryan, K.C., Key, C.C. and Running, S.W. 1996. Remote sensing of forest fire severity and vegetation recovery. International Journal of Wildland Fire 6: 125-136. https://doi.org/10.1071/WF9960125
  67. Williams-Linera, G. 1990. Vegetation structure, and environmental conditions of forest edges in Panama. Journal of Ecology 78: 356-373. https://doi.org/10.2307/2261117
  68. Wimberly, M.C. and Reilly, M.J. 2007. Assessment of fire severity and species diversity in the southern Appalachians using Landsat TM and ETM+ imagery. Remote Sensing of Environment 108: 189-197. https://doi.org/10.1016/j.rse.2006.03.019