Identification of Key Metabolites Involved in Quantitative Growth of Pinus koraiensis

잣나무의 생장특성과 관련있는 주요 대사물질 인자 구명

  • Lee, Wi Young (Division of Tree Breeding, Korea Forest Research Institute) ;
  • Park, Eung-Jun (Division of Forest Biotechnology, Korea Forest Research Institute) ;
  • Han, Sang Urk (Division of Tree Breeding, Korea Forest Research Institute)
  • 이위영 (국립산림과학원 임목육종과) ;
  • 박응준 (국립산림과학원 산림생명공학과) ;
  • 한상억 (국립산림과학원 임목육종과)
  • Published : 2012.12.31

Abstract

A metabolomic study was conducted to identify key metabolic components, which are correlated with the growth of 4-year-old Pinus koraiensis seedlings harvested at actively height growing season (May 18th). Among 105 individual metabolites identified by GC/MS analysis, alanine, threonine, oleic acid, and butanoic acids were negatively correlated with both height and weight of 4-year-old seedlings, while malic acid, xylose, glucose, d-turanose and inositol had positive correlation with various growth parameters. During the actively growing season, the concentrations of both amino acids and organic acids in the main stem of Superior seedling group were lower but the photosynthates such as mono-saccharide and sucrose were higher than in other seedling groups such as Intermediate and Inferior. Interestingly, d-turanose, an analogue of sucrose that is not metabolized in higher plants but used as carbon source by many organisms including numerous species of bacteria and fungi, showed the highest correlation (r=0.896, p<0.001) with height of 4-year-old seedlings, indicating that possible interaction with mycorrhizal organisms. Therefore we suggest that several metabolites selected in this study may be used as metabolic markers for complex traits in P. koraiensis.

잣나무(Pinus koraiensis) 4년생의 생장특성인자와 관련이 있는 주요 대사물질을 확인하기위한 대사체 분석을 실시하였다. GC/MS로 분리한 105종을 대상으로 길이생장 및 건중량의 생장 특성과의 상관이 있는 대사물질을 분석하였다. Alanine, threonine, oleic acid 및 butanoic acids는 길이생장 및 건중량과 고도의 부의 상관관계가 있었고, 반면 malic acid, xylose, glucose, inositol 및 sucrose는 생장특성과 정의 상관관계가 있었다. 생장이 왕성한 시기에는 생장이 우수한 그룹에서 주지의 아미노산류나 유기산류 함량이 줄어드는 것으로 추정되었으며, 반면 단당류나 sucrose 같은 광합성 산물은 중위 및 하위 그룹에 비교해서 함량이 높은 것으로 나타났다. 특이하게도 박테리아나 균류에서 생성되는 d-turanose의 함량이 4년생 잣나무 묘고생장과 고도의 상관관계(r=0.896, p<0.001)가 있었으며, 이는 근균류와의 관계가 있는 것으로 추정된다. 이러한 인자들은 잣나무 우량개체 선발을 위한 대사 표지자 개발의 기초자료로 이용될 수 있을 것이다.

Keywords

References

  1. 김형량, 정희종. 2000. 황칠나무 잎 및 종실의 화학적 특성. 한국농화학회지 43(1): 63-66.
  2. Dowlatabadi, R., Weljie, A.M., Thorpe, T.A., Yeung, E.C. and Vogel, H.J. 2009. Metabolic footprinting study of white spruce somatic embryogenesis using NMR spectroscopy. Plant Physiology and Biochemistry 47: 343-350. https://doi.org/10.1016/j.plaphy.2008.12.023
  3. Dinant, S. and Lemoine, R. 2010. The phloem pathway: New issues and old debates. Plant biology and pathology 333: 307-319.
  4. Fernie, A.R. and Schauer, N. 2008. Metabolomics-assisted breeding: a viable option for crop improvement? Trends in Genetics 25: 39-48.
  5. Kozlowski, T.T., Kramer, P.J. and Pallardy, S.G. 1991. The physiological ecology of woody plants. Academic Press. pp. 13-15.
  6. Langridge, P. and Fleury, D. 2011. Making the most of "omics" for crop breeding. Trends in Biotechnology 29: 33-40. https://doi.org/10.1016/j.tibtech.2010.09.006
  7. Meyer, R.C., Steinfath, M., Lisec, J., Becher, M., Witucka-Wall, H., Torjek, O., Fiehn, O., Eckardt, A., Willmitzer, L., Selbig, J. and Altmann, T. 2007. The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Plant National Academy of Sciences 104: 4759-4764. https://doi.org/10.1073/pnas.0609709104
  8. Nicholson, J.K. and Lindon, J.C. 2008. Metabonomics. Nature 455: 1054-1056. https://doi.org/10.1038/4551054a
  9. Ossipov, V., Ossipova, S., Bykov, V., Oksanen, E., Koricheva, J. and Haukioja, E. 2008. Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment. Metabolomics 4: 39-51. https://doi.org/10.1007/s11306-007-0097-8
  10. Paul, M. 2007. Trehalose-6-phosphate. Current Opinion in Plant Biology 10(3): 303-309. https://doi.org/10.1016/j.pbi.2007.04.001
  11. Roberts, R.M. and Loewus, F. 1966. Inositol metabolism in plants. III. Conversion of myo-inositol-2-3H to cell wall polysaccharides in sycamore (Acer pseudoplatanus L.) cell culture. Plant Physiology 41: 1489-1498. https://doi.org/10.1104/pp.41.9.1489
  12. Robinson, A.R., Ukrainetz, N.K., Kang, K.Y. and Mansfield, S.D. 2007. Metabolite profiling of Douglas-fir (Pseudotsuga menziesii) field trials reveals strong environmental and weak genetic variation. New Phytologist 174: 762-773. https://doi.org/10.1111/j.1469-8137.2007.02046.x
  13. Robinson, A.R., Gheneim, R., Kozak, R.A., Ellis, D.D. and Mansfield, S.D. 2005. The potential of metabolite profiling as a selection tool for genotype discrimination in Populus. Journal of Experimental Botany 56: 2807-2819. https://doi.org/10.1093/jxb/eri273
  14. Shulaev, V., Cortes, D., Millerb, G. and Mittler, R. 2008. Metabolomics for plant stress response. Physiologia Plantarum 132: 199-208. https://doi.org/10.1111/j.1399-3054.2007.01025.x
  15. Sinha, A.K., Hofmann, M.G., Romer, U., Kockenberger, W., Elling, L. and Roitsch, T. 2002. Metabolizable and non-Metabolizable sugars activate different signal transduction pathways in tomato. Plant Physiology 128: 1480-1489. https://doi.org/10.1104/pp.010771
  16. Stevenson, J.M., Perera, I.Y., Heilmann, I., Persson, S. and Boss, W.F. 2000. Inositol signaling and plant growth. Trends in Plant Science Reviews 5: 252-258. https://doi.org/10.1016/S1360-1385(00)01652-6
  17. Thissen, U., Coulier, L., Overkamp, K.M., Jetten, J., Van der Werf, B.J.C., Van de Ven, T. and Van der Werf, M.J. 2011. A proper metabolomics strategy supports efficient food quality improvement: A case study on tomato sensory properties. Food Quality and Preference 22: 499-506. https://doi.org/10.1016/j.foodqual.2010.12.001
  18. Viant, M.R. 2008. Recent developments in environmental metabolomics. Molecular BioSystems 4: 980-986. https://doi.org/10.1039/b805354e
  19. Wu, H.X. 1999. Study of early selection in tree breeding. 2. Advantage through shortening the breeding cycle. Silvae Genetica 4: 78-83.
  20. Xu, Z.H., Prasolova, N.V., Lundkvist, K., Beadle, C. and Leaman, T. 2003. Genetic variation in branchlet carbon and nitrogen isotope composition and nutrient concentration of 11-year-old hoop pine families in relation to tree growth in subtropical Australia. Forestry Ecology and Management 186: 359-371. https://doi.org/10.1016/S0378-1127(03)00304-9
  21. Yamaguchi, S. 2008. Gibberellin metabolism and its regulation. Annual Review Plant Biology 59: 225-251. https://doi.org/10.1146/annurev.arplant.59.032607.092804
  22. Zhang, J., Wang, X., Yu, O., Tang, J., Gu, X., Wan, X. and Fang, C. 2011. Metabolic profiling of strawberry (Fragaria${\times}$ananassa Duch.) during fruit development and maturation. Journal of Experimental Botany 62: 1103-1118. https://doi.org/10.1093/jxb/erq343