Screening of Ethanol Extracts of Korean Fruits and Vegetables for Cell Viability and Antioxidant Enzyme Activity on Alloxan-Induced Oxidative Stress in Pancreatic Beta Cell

Alloxan에 의해 유발된 산화스트레스에 대한 과일과 채소 추출물의 췌장베타세포 생존율과 항산화 효소활성 효과

  • Kim, Inhye (Dept. of Agrofood Resources, National Academy of Agricultural Science, Rural Development Administration) ;
  • Om, Ae-Son (Dept. of Food and Nutrition, College of Human Ecology, Hanyang University) ;
  • Kim, Jae-Hyun (Dept. of Agrofood Resources, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Haeng-Ran (Dept. of Agrofood Resources, National Academy of Agricultural Science, Rural Development Administration)
  • 김인혜 (농촌진흥청 국립농업과학원 농식품자원부) ;
  • 엄애선 (한양대학교 생활과학대학 식품영양학과) ;
  • 김재현 (농촌진흥청 국립농업과학원 농식품자원부) ;
  • 김행란 (농촌진흥청 국립농업과학원 농식품자원부)
  • Published : 2012.04.25

Abstract

The present study was taken to screen the anti-oxidative effects of several fruits and vegetable ethanol extracts(FVE) against alloxan(AXN)-induced oxidative stress in pancreatic ${\beta}$-cells, HIT-T 15. To evaluate the cytoprotective potential effect of FVE, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliu bromide(MTT) cell proliferation assay, lactate dehydrogenase(LDH) release assay, $NAD^+$/NADH ratio, insulin secretion and antioxidant enzyme activity(SOD, GST, GR and GPx) were assessed. All of those extracts significantly increased cell viability which was decreased by AXN. Of these 13 extracts, 11 extracts(Allium sativum, Petasites japonicus and Schisandra chinensis, etc.) were significantly lowered LDH leakage and 9 extracts(Allium sativum, Prunus salicina and Youngia sonchifolia, etc.) were significantly elevated $NAD^+$ /NADH ratio. The insulin secretion was also increased by extracts such as, Allium sativum, Cornus officinalis and Youngia sonchifolia. Moreover, 5 extracts, including Perilla frutescens, Prunus persica for. alba, Prunus persica for. rubro-plena, Prunus salicina and Schisandra chinensis, showed significantly increased antioxidant enzyme activities compared with AXN-treated cells. From these findings, it is suggested that stem of Allium sativum, fruit of Cornus officinalis, fruit of Prunus salicina, fruit of Schisandra chinensis and aerial part of Youngia sonchifolia have significantly potential protective effects against AXN-induced oxidative stress damage in pancreatic ${\beta}$-cells. We therefore suggest the screened fruits and vegetables could be a promising source as the effective and safe ingredients for developing functional foods.

본 연구는 국내에서 상용 중인 과일 및 채소로부터 췌장베타세포 보호활성을 가지는 추출물의 식물 자원을 탐색해보고자 수행되었다. Alloxan에 대한 총 13종의 과일 채소 추출물에 대한 효과를 햄스터췌장베타세포주(HIT-T15)를 배양한 후 세포생존율, LDH방출량, NAD+/NADH ratio, 인슐린 분비량 및 4종의 항산화효소 활성을 측정하였다. 총 13종의 과일 채소 추출물은 alloxan에 의해 감소된 세포생존율을 유의하게 증가시켰다. 마늘종(Allium sativum) 등의 11종의 시료는 alloxan에 의해 증가된 LDH 방출량을 유의적으로 감소시켰으며, 산수유(Cornus officinalis) 등의 9종의 시료는 alloxan에 의해 감소된 $NAD^+$/NADH ratio를 유의적으로 상승시킴으로써 세포생존율을 증가시켰다. 또한 3종의 추출물인 마늘종(Allium sativum), 산수유(Cornus officinalis)와 고들빼기(Yongjia sonchifolia) 추출물은 인슐린 분비능을 보호하였고 깻잎 등 5종의 시료는 SOD, GST, GR 및 GPx와 같은 항산화효소 활성을 유의적으로 증가시켰다. 과일 채소 추출물은 세포괴사 및 DNA fragmentation을 억제하고 세포 내 항산화효소 활성을 증가시킴으로써 alloxan에 의해 유발된 산화스트레스로부터 췌장베타 세포를 보호하는 것으로 생각된다. 이상의 연구결과로부터 마늘종(Allium sativum), 산수유(Cornus officinalis), 자두(Prunus salicina), 오미자(Schisandra chinensis) 및 고들빼기(Yongjia sonchifolia)와 같은 5종의 추출물이 alloxan에 의한 산화스트레스로부터 췌장베타세포를 보호하는 효과가 우수한 것으로 판단되며 향후 췌장베타세포의 손상을 억제하는 기능성 식품 등의 개발에 기초 연구자료로 활용될 것으로 생각된다.

Keywords

References

  1. Alarcon-Aguilara, F.J., R. Roman-Romos, S. Perez-Gutierrez, A. Aguilar-Contreras, C.C. Contreras-Weber, and J.L. Rlores-Saenz. 1998. Study of the anti-hyperglycemic effect of plants used as antidiabetics. J. Ethanopharmacol. 61(2):101-110. https://doi.org/10.1016/S0378-8741(98)00020-8
  2. Birdee, G.S. and G. Yeh. 2010. Complementary and alternative medicine therapies for diabetes: a clinical review. Clin. Diabetes 28(4):147-155. https://doi.org/10.2337/diaclin.28.4.147
  3. Brownlee, M. 2005. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 54(6):1615-1625. https://doi.org/10.2337/diabetes.54.6.1615
  4. Butler, A.E., J. Janson, S. Bonner-Weir, R. Ritzel, R.A. Rizza, and P.C. Butler. 2003. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52(1):102-110. https://doi.org/10.2337/diabetes.52.1.102
  5. Chung, H.S., J.A. Seo, S.G. Kim, N.H. Kim, D.M. Kim, C.H. Chung, and D.S. Choi. 2009. Relationship between metabolic syndrome and risk of chronic complications in Koreans with type 2 diabetes. Korean Diabetes J. 33(5):392-400. https://doi.org/10.4093/kdj.2009.33.5.392
  6. De La Pena, V.A., P. Diz Dios, and R. Tojo Sierra. 2007. Relationship between lactate dehydrogenase activity in saliva and oral health status. Arch. Oral. Biol. 52(10):911-915. https://doi.org/10.1016/j.archoralbio.2007.04.008
  7. Evans, J.L., I.D. Goldfine, B.A. Maddux, and G.M. Grodsky. 2003. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes 52(1):1-8. https://doi.org/10.2337/diabetes.52.1.1
  8. Ha, D.H., Y.J. Park, and D.S. Han. 2009. Antioxidant effect of polygalae radix extract on the glioma cells damaged by reactive oxigen species in culture. Korean Soc. People Plants Environ. 12(1):11-18.
  9. Jung, H.K., Y.S. Jeong, C.D. Park, C.H. Park, and J.H. Hong. 2010. Effect of the ethanol extract from citrus peels on oxidative damage in alloxan-induced HIT-T15 cell. J. Korean. Soc. Food. Sci. Nutr. 39(8):1102-1106. https://doi.org/10.3746/jkfn.2010.39.8.1102
  10. Lee, D.S., G.S. Jeong, R.B. An, B. Li, E. Byun, and Y.C. Kim. 2008a. Search for plant extracts with protective effects of pancreatic beta cell against oxidative stress. Kor. J. Pharmacogn. 39(4):335-340.
  11. Lee, J.H., J.W. Park, J.S. Kim, B.H. Park, and H.W. Rho. 2008b. Protective effect of Amomi semen extract on alloxan-induced pancreatic ${\beta}$-cell damage. Phytother. Res. 22(1):86-90. https://doi.org/10.1002/ptr.2271
  12. Lenzen, S. 2008. The mechanisms of alloxan- and streptozotocininduced diabetes. Diabetologia. 51(2):216-226. https://doi.org/10.1007/s00125-007-0886-7
  13. Li, Y., T. Nishimura, K. Teruya, T. Maki, T. Komatsu, T. Hamasaki, T. Kashiwagi, S. Kabayama, S.Y. Shim, Y. Katakura, K. Osada, T. Kawahara, K. Otsubo, S. Morisawa, Y. Ishii, Z. Gadek, and S. Shirahata. 2002. Protective mechanisms of reduced water against alloxan-induced pancreatic ${\beta}$-cell damage: scavenging effect against reactive oxygen species. Cytotechnology. 40(1-3): 139-149. https://doi.org/10.1023/A:1023936421448
  14. Lim, S., D.J. Kim, I.K. Jeong, H.S. Son, C.H. Chung, G. Koh, D.H. Lee, K.C. Won, J.H. Park, T.S. Park, J. Ahn, J. Kim, K.G. Park, S.H. Ko, Y.B. Ahn, and I. Lee. 2009. A nationwide survey about the current status of glycemic control and complications in diabetic patients in 2006 - the committee of the Korean diabetes association on the epidemiology of diabetes mellitus. Korean Diabetes J. 33(1):48-57. https://doi.org/10.4093/kdj.2009.33.1.48
  15. Lupi, R. and S. Del-Prato. 2008. Beta-cell apoptosis in type 2 diabetes: quantitative and functional consequences. Diabetes. Metab. 34(2):S56-64. https://doi.org/10.1016/S1262-3636(08)73396-2
  16. Kajimoto, Y. and H. Kaneto. 2004. Role of oxidative stress in pancreatic ${\beta}$-cell dysfunction. Ann. N. Y. Acad. Sci. 1011: 168-176. https://doi.org/10.1196/annals.1293.017
  17. Kamnouche, N., B. Merah, A. Derdour, S. Bellabouel, J. Bouayed, A. Dicko, C. Younos, and R. Soulimani. 2009. Hypoglycemic and antihyperglycemic effects of Anabasis articulata(Forssk) Moq(Chenopodiaceae), an Algerian medicinal plant. Afr. J. Biotechnol. 8(20):5589-5594.
  18. Kim, E.S., S.M. Han, Y.I. Kim, K.H. Song, M.S. Kim, W.B. Kim, J.Y. Park, and K.U. Lee. 2004. Prevalence and clinical characteristics of metabolic syndrome in a rural population of South Korea. Diabet. Med. 21(10):1141-1143. https://doi.org/10.1111/j.1464-5491.2004.01398.x
  19. Kim, H.S., D.J. Kim, H.J. Hwang, H.J. Lee, and M. Choe. 2007. Hypoglycemic effect of nutraceuticals extract supplementations on NIDDM patients. J. Korean. Soc. Appl. Biol. Chem. 50(1): 68-71.
  20. Kim, O.K. 2004. Antidiabetic effect of Glechoma hederacea L. in streptozotocin-induced diabetic rats. Kor. J. Pharmacogn. 35(4):300-308.
  21. Kim, S.G. and D.S. Choi. 2009. Epidemiology and current status of diabetes in Korea. Hanyang. Medical. Reviews 29(2):122-129.
  22. Malaisse W.J., F. MALAISSE-Lagae, A. Sener, and D.G. Pipeleers. 1982. Determinants of the selective toxicity of alloxan to the pancreatic ${\beta}$ cell. Proc. Natl. Acad. Sci. 79(3):927-930. https://doi.org/10.1073/pnas.79.3.927
  23. Moon, E.J., Y.E. Jo, T.C. Park, Y.K. Kim, S.H. Jung, H.J. Kim, Y.S. Chung, and K.W. Lee. 2008. Clinical characteristics and direct medical costs of type 2 diabetic patients. Korean. Diabetes J. 32:358-365. https://doi.org/10.4093/kdj.2008.32.4.358
  24. Park, I.B. and S.H. Baik. 2009. Epidemilogic characteristics of diabetes mellitus in Korea: current status of diabetic patients using Korean health insurance database. Korean. Diabetes J. 33:357-362. https://doi.org/10.4093/kdj.2009.33.5.357
  25. Park, S.H., M.J. Kwang, Y.C. Lee, and J.K. Lee. 2011. Antioxidant effect of Lonicera japonica L. extract on cultured C6 glioma cells damaged by glucose oxidase. J. Korean Soc. People Plants Environ. 14(4):207-213.
  26. Park, T.S., T.H. Lee, and H.R. Kim. 1999. Protective mechanism of glucose against alloxan-induced HIT-T15 cell damage. Korean. Diabetes J. 23:530-540.
  27. Pi, J., Q. Zhang, J. Fu, C.G. Woods, Y. Hou, B.E. Corkey, S. Collins, and M.E. Andersen. 2010. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol. Appl. Pharmacol 244(1):77-83. https://doi.org/10.1016/j.taap.2009.05.025
  28. Ramkumar K.M, C. Manjula, L. Sankar, S. Suriyanarayanan, and P. Rajaguru. 2009. Potential in vitro antioxidant and protective effects of Gymnema montanum H. on alloxan-induced oxidative damage in pancreatic ${\beta}$-cells, HIT-T15. Food. Chem. Toxicol. 47(9):2246-2256. https://doi.org/10.1016/j.fct.2009.06.011
  29. West, I.C. 2000. Radical and oxidative stress in diabetes. Diabet. Med. 17(3):171-180. https://doi.org/10.1046/j.1464-5491.2000.00259.x