Effects of Shading Rates on Growth Characteristics and Photosynthesis in Four Broad-leaved Evergreen Trees

차광률이 상록활엽수 4수종의 생장특성 및 광합성에 미치는 영향

  • Choi, Su-Min (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Shin, Hyeon-Cheol (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Lee, Kwang-Su (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Bae, Eun-Gee (Southern Forest Research Center, Korea Forest Research Institute) ;
  • Choi, Kyoung-Ok (Gyeongnam National University of Science and Technology) ;
  • Huh, Keun-Young (Gyeongnam National University of Science and Technology)
  • 최수민 (국립산림과학원 남부산림연구소) ;
  • 신현철 (국립산림과학원 남부산림연구소) ;
  • 이광수 (국립산림과학원 남부산림연구소) ;
  • 배은지 (국립산림과학원 남부산림연구소) ;
  • 최경옥 (경남과학기술대학교) ;
  • 허근영 (경남과학기술대학교)
  • Published : 2012.04.25

Abstract

This study was conducted to assess the potential as indoor plants of four broad-leaved evergreen trees grown in tropical and subtropical moist forests that have ornamental value. Osmanthus fragrans var. aurantiacus Makino, Litsea japonica (Thunb.) Juss., Photinia glabra (Thunb.) Maxim., and Pittosporum tobira (Thunb.) W.T. Aiton were investigated to compare the effects of morphological and physiological changes under different shading rates. The four species were cultivated for seven months under five different shading treatments(0, 35, 50, 75, 95%) and then measured to analyze any changes in plant height, leaf length and width, the number of leaves and shoots, chlorophyll contents, photosynthetic capacity, and light compensation point. The overall growth of four species was good under 0~75% shading. L. japonica and P. tobira showed the well-grown under 95% shading and total chlorophyll contents showed similar trends to the growth. The photosynthetic capacity under 0% shading showed highest in 3 species except P. glabra. The light compensation point of O. Fragrans, L. Japonica, P. glabra, and P. tobira were relatively about $19.36{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$(968lux), $5.46{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$(273lux), $11.30{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$(565lux), and $6.62{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$(331lux).

관상가치가 높은 상록활엽수 4종에 대하여 실내조경소재로서 도입 가능성을 평가하기 위하여 차광률 0, 35, 50, 75, 95%로 달리하여 실험구를 조성하고 생육상태와 광합성반응을 분석하였으며 최종으로 그 활용 가능성을 평가하고자 하였다. 먼저 생육특성을 살펴볼 때, 까마귀쪽나무와 돈나무는 차광률 95%까지 그리고 금목서와 홍가시나무는 차광률 75%까지 양호한 생육을 나타냈다. 엽록소 함량 변화는 생육특성에서 나타난 결과와 유사하였다. 상대적으로 까마귀쪽나무와 돈나무는 차광률 35~95% 범위에서 차광정도에 따라서 적절하게 순응하는 것으로 나타났지만, 금목서와 홍가시나무는 적절하게 대응하지 못하였고 차광률 95%에서는 오히려 총엽록소 함량이 감소하였다. 광합성능력은 4수종에서 3가지 유형의 순응 반응을 나타냈다. 차광률 95%에서 불량한 생육을 보인 금목서와 양호한 생육을 보인 돈나무는 전형적인 양엽과 음엽에서 나타는 광합성능력 차이를 나타냈다. 돈나무와 유사하게 차광률 95%에서 양호한 생육을 보인 까마쪽나무는 양엽과 음엽 간에 광합성능력 차이를 거의 나타내지 않았다. 양수에 가까운 중용수로서 차광률 95%에서 불량한 생육을 보인 홍가시나무는 차광률 35%에서 가장 높은 광합성능력을 나타냈다. 최종으로 각 수종에서 차광에 따른 광환경의 순응 정도, 즉 내음성을 광보상점으로 평가하면, 금목서는 차광률 75%인 968lux 이상, 까마귀쪽나무는 차광률 95%인 273lux 이상, 돈나무는 차광률 95%인 331lux 이상, 홍가시나무는 차광률 75%인 565lux 이상의 광도를 요구하는 것으로 나타났다.

Keywords

References

  1. Bang, K.J. and J.S. Lee. 1993. The development of native plant materials for landscaping of the middle area. J. Kor. Institute of Landscape Architecture 21:63-82.
  2. Cho, M.S. 2008. Effect of light intensity on physiological characteristics and growth performances of deciduous hardwood species distributed in the central temperature zone of Korean forest. Master Thesis, Chungnam Univ, Daegeon.
  3. Cho, H.J., K.J. Bang, N.H. Lee, and Y.H. Lee. 1997. A study on the utilization of interior landscape plant through the investigation of image. J. of Kor. Institute of Landscape Architecture 25(3):210-221.
  4. Choi, J.H. 2001. Effect of artificial shade treatment on the growth performances, water relations, and photosynthesis of several tree species. PhD. Diss., Chungnam National Univ., Daegeon.
  5. Choi, K.Y., I.H. Kim, S.W. Lee, S.J. Park, J.G. Yun, and J.K. Hong. 2009. Effect of root growth regulators on the cutting of Pittosporum tobira and Photinia glabra as indoor plants. Kor. J. Hort. Sci. Technol. 27(SUPPL. I):141-142.
  6. Han, J.G., S.G. Son, S.H. Kim, C.S. Kim, S.I. Hwang and K.O. Byun. 2008. Photosynthesis, chlorophyll contents and leaf characteristics of Ilex rotunda under different shading treatments. Korean J. Plant Res. 21(4):299-303.
  7. Kang, G.H. 2009. Evaluation of environmental tolerance of Korean native evergreen vines for landscape uses. PhD. Diss. Chungnam National Univ., Daegeon.
  8. Kim, P.G. and E.J. Lee. 2001a. Ecophysiology of photosynthesis: Effects of light intensity and intercellular CO2 pressure on photosynthesis. Kor. J. of Agr. Forest Meteorology 3(2):126-133.
  9. Kim, P.G. and E.J. Lee. 2001b. Ecophysiology of photosynthesis: Adaptation of the photosynthetic apparatus to changing environment. Kor. J. of Agr. Forest Meteorology 3(3):171-176.
  10. Li, Q. and C. Kubota. 2009. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 67(1):59-64. https://doi.org/10.1016/j.envexpbot.2009.06.011
  11. Lee, D.W., S.W. Han, and K.J. Kim. 2010. Analysis of growth and adaptability in indoor environment for developing indoor shrubs among native shrubs. Kor. J. Hort. Sci. Technol. 28(SUPPL. I):132.
  12. Lee, J.S. and H.W Oh. 2002 Using trend of Korean native plants for interior landscape in Korea. J. Kor. Flower Res. Soc. 10(2):91-96.
  13. Lee, J.S., K.J. Bang, and S.J. Kim. 2008. New interior landscape. Seoul:Jogyeong press.
  14. Lee, K.J. 2000. Woody plant physiology. Seoul:Seoul National University Press.
  15. Lim, J.H., S.Y. Woo, M.J. Kwon, J.H. Chun, and J.H. Shin. 2006. Photosynthetic capacity and water use efficiency under different temperature regimes on healty and declining Korean Fir in Mt. Halla J. Kor. For. Soc. 95(6):705-710.
  16. Lu, Q., X. Wen, C. Lu, Q. Zang, and T. Kuang. 2003. Photoingibition and Photoprotection in senescent leaves of field-grown wheat plants. Plant Physiol. and Biochem. 41:749-754. https://doi.org/10.1016/S0981-9428(03)00098-6
  17. McCree, K.J. 1972. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agricultural Meteorology 9:191-216.
  18. Shin, H.C., N.C. Park, and J.H. Hwang. 2006. Warm-temperate tree species of south Korea. Seoul:Korea Forest Research Institute.
  19. Shin, H.C., I,H. Kim, and K.O. Choi. 2011. The adaptability for the light of the native evergreen Cinnamomum caphora T. Nees. under litght quality and the introduction plan in the indoor landscaping space. Kor. J. Hort. Sci. Technol. 29(SUPPL II):152.
  20. Shin, H.C., J.G. Yun, and K.O. Choi. 2011. Growth responses and introduction plan of the native evergreen Neolitsea sericea (Bl.)Koidz. according to interior light source. Kor. J. Hort. Sci. Technol. 29(SUPPL II):152-153.
  21. Son, S.G., S.M. Je, S.Y. Woo, K.O. Byun, Y.J. Kang, and B.S. Kwang. 2006. Physiological differences of Ilex rotunda and Illicium anisatum under low light intensities. Kor. J. of Agr. Forest Meteology 8(2):61-67.
  22. Son, S.G., J.G. Han, C.S. Kim, S.I. Hwang, J.H. Jeong, and S.G. Lee. 2007. Photosynthesis, chlorophyll contents and leaf characteristics of Illicum anisatum under different shading treatments. J. of the Environ. Sci. 16(11):1313-1318.
  23. Taiz, L. and E. Zeiger. 1991. Plant physiology. California:The Benjamin/Cummings Publishing Company, Inc.
  24. Terashima, I. and K. Hikosaka. 1995. Comparative ecophysiology of leaf and canopy photosynthesis. Plant, Cell and Environ. 18:1111-1128. https://doi.org/10.1111/j.1365-3040.1995.tb00623.x
  25. Zscheile, F.P. and C.L. Comar. 1941. Influence of preparative procedure on the purity of chlorophyll components as shown by absorption spectra. Bot. Gaz. 102:463-481. https://doi.org/10.1086/334981