Identification of Key Metabolites in the Regulation of Metabolism and Clonal Growth of Populus davidiana Dode

사시나무의 클론 생장에 관여하는 주요 대사물질의 구명

  • Lee, Wi Young (Department of Forest Genetic Resources Development, Korea Forest Research Institute) ;
  • Han, Sang Urk (Department of Forest Genetic Resources Development, Korea Forest Research Institute)
  • 이위영 (국립산림과학원 산림유전자원부) ;
  • 한상억 (국립산림과학원 산림유전자원부)
  • Published : 2012.09.30

Abstract

In order to identify key metabolic components in the regulation of growth of Populus davidiana Dode, clonal growth performances in a field trial at the 18-year-old stage were compared with metabolic profiles in developing inner bark of the corresponding clones. Clonal biomass accumulation was significantly correlated with the levels of total carbon, total nitrogen, ${\delta}^{15}N$, and sucrose. Interestingly, the concentrations of both total nitrogen and free amino acids showed strong correlations with diameter of breast height, height and stem volume (p < 0.01), indicating that the more nitrogen in developing xylem stimulated the better growth. Among 78 metabolites, the contents of 51 individual metabolites including succinic acid, malic acid, citric acid, sucrose and phosphoric acid, had significant correlation with volume growth. In addition, superior clones contained relatively higher levels of free amino acids and sucrose compared with other clones. These results would furthermore provide precedence for the utility of metabolic profiling data to extract biomarkers with high predictive power for a complex trait.

사시나무의 생장 특성과 대사물질간의 관계를 구명하여 생장추정 관련 주요 인자를 구명하고자 사시나무 18년생을 대상으로 우량 클론과 일반 클론간의 생장특성 및 생장하고 있는 주간 내피조직의 대사물질을 비교, 분석하였다. 사시나무 생장특성과 주간 내피조직의 전탄소 함량, 전질소 함량, ${\delta}^{15}N$ 값 및 sucrose 함량 간에 유의적 상관관계가 있었다. 특히 유리 아미노산의 함량은 재적 및 흉고직경과 고도의 정의 상관 관계(p<0.01)가 있어 수체내의 질소함량이 높을수록 생장이 우수한 것으로 나타났다. GC/MS를 이용하여 사시나무 클론 간의 대사체를 분석한 결과 78종의 대사물질 중 51종이 재적생장과 상관관계가 있었으며, 주간 내피조직의 succinic acid, malic acid, citric acid, sucrose 및 phosphoric acid의 함량이 상대적으로 높을수록 재적 생장이 큰 것으로 추정되었다. 또한 사시나무 생장 우량클론은 주간 내피조직의 수용성sucrose 및 유리 아미노산 함량이 상대적으로 높은 것으로 나타났다. 이러한 복합적 인자는 사시나무 우량클론 선발을 위한 대사 표지자의 개발을 위한 기초 자료로 이용될 수 있을 것이다.

Keywords

References

  1. Barber VA, Juday GP, Finney BP. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature. 405: 668-673. https://doi.org/10.1038/35015049
  2. Evans JR. 1989. Photosynthesis and nitrogen relationships in leaves of $C_{3}$ plants.Oecologia.78: 9-19. https://doi.org/10.1007/BF00377192
  3. Fernie AR, Schauer N. 2008. Metabolomics-assisted breeding: A viable option for crop improvement? Trends in Genetics. 25: 39-48.
  4. Fiehn O, Kloska S, Altmann T. 2001. Integrated studies on plant biology using multi parallel techniques. Currency Opinion Biotechnology. 12: 82-86. https://doi.org/10.1016/S0958-1669(00)00165-8
  5. Field C, Mooney HA. 1986. The photosynthesis-nitrogen relationship in wild plant. In: Givnish, R. (Ed.), On the Economy of Plant Form and function. Cambridge University Press. Cambridge. pp.25-55.
  6. Guy RD, Holowachuk DL. 2001. Population differences in stable carbon isotope ratio of Pinus contorta Dougl. ex Loud.: relationship to environment, climate of origin and growth potential. Canadian Journal of Botany. 79: 274-283.
  7. Koo YB, Kim IS, Yeo JK, Lee JC, Tak WS. 2001. Characteristics of Korean aspen (Populus davidiana Dode) progenies from artificial mating. Korean Journals of Breeding. 33: 311-317.
  8. Koo YB, Yeo JK, Woo KS, Kim TS. 2007. Selection of superior clones by stability analysis of growth performance in Populus davidiana Dode at age 12. Silvae Genetica. 56: 93-101.
  9. Kozlowski TT, Kramer PJ, Pallardy SG. 1991. The physiological ecology of woody plants. Academic Press. pp.13-15.
  10. Langridge P, Fleury D. 2011. Making the most of "omics" for crop breeding. Trends in Biotechnology. 29: 33-40. https://doi.org/10.1016/j.tibtech.2010.09.006
  11. Lee WY, Park EJ, Han SU. 2010. Correlation of growth performance with total nitrogen, carbon and nitrogen isotope compositions in the xylem of Pinus koraiensis. Journal of Korean Forest Society. 99: 353-358.
  12. Meyer RC, Steinfath M, Lisec J, Becher M, Witucka-Wall H, Torjek O, Fiehn O, Eckardt A, Willmitzer L, Selbig J, Altmann T. 2007. The metabolic signature related to high plant growth rate in Arabidopsis thaliana. Plant National Academy of Sciences. 104: 4759-4764. https://doi.org/10.1073/pnas.0609709104
  13. Nicholson JK, Lindon JC. 2008. Metabonomics. Nature. 455: 1054-1056. https://doi.org/10.1038/4551054a
  14. Noh ER, Lee SK, Koo YB, Chung KH. 1988. A mass propagation method of aspen (Populus davidiana Dode) using tissue culture and juvenile cutting technique. Research Report of Forest Genetic Institute. 24: 20-27.
  15. Noh ER, Lee SK, Koo YB, Hong RP. 1989. Growth patterns and variation of some economic characteristics in selected Korean aspen (Populus davidiana Dode). Research Report of Forest Genetic Institute. 25: 11-29.
  16. Noh ER, Koo YB, Lee SK. 1997. Selection of Populus davidiana Dode clones using stability analysis. Research Report of Forest Genetic Institute. 33: 1-13.
  17. Olbrich BW, Le Roux D, Poulter AG, Bond WJ, Stock WD. 1993. Variation in water use efficiency and $\delta^{13}C$ levels in Eucalyptus grandis clone. Journal of Hydrology 15: 615-633.
  18. Ossipov V, Ossipova S, Bykov V, Oksanen E, Koricheva J, Haukioja E. 2008. Application of metabolomics to genotype and phenotype discrimination of birch trees grown in a long-term open-field experiment. Metabolomics. 4: 39-51. https://doi.org/10.1007/s11306-007-0097-8
  19. Paul M. 2007. Trehalose-6-phosphate. Current Opinion in Plant Biology. 10(3): 303-309. https://doi.org/10.1016/j.pbi.2007.04.001
  20. Robinson AR, Gheneim R, Kozak RA, Ellis DD, Mansfield SD. 2005. The potential of metabolite profiling as a selection tool for genotype discrimination in Populus. Journal of Experimental Botany 56: 2807-2819. https://doi.org/10.1093/jxb/eri273
  21. Robinson AR, Ukrainetz NK, Kang KY, Mansfield SD. 2007. Metabolite profiling of Douglas-fir (Pseudotsuga menziesii) field trials reveals strong environmental and weak genetic variation. New Phytologist. 174: 762-773. https://doi.org/10.1111/j.1469-8137.2007.02046.x
  22. Shulaev V, Cortes D, Millerb G, Mittler R. 2008. Metabolomics for plant stress response. Physiologia Plantarum. 132: 199-208. https://doi.org/10.1111/j.1399-3054.2007.01025.x
  23. Sinha AK, Hofmann MG, Römer U, Köckenberger W, Elling L, Roitsch T. 2002. Metabolizable and non-Metabolizable sugars activate different signal transduction pathways in tomato. Plant Physiology. 128(4): 1480-1489. https://doi.org/10.1104/pp.010771
  24. Thissen U, Coulier L, Overkamp KM, Jetten J, Van der Werf BJC, Van de Ven T, Van der Werf MJ. 2011. A proper metabolomics strategy supports efficient food quality improvement: A case study on tomato sensory properties. Food Quality and Preference 22: 499-506. https://doi.org/10.1016/j.foodqual.2010.12.001
  25. Viant MR. 2008. Recent developments in environmental metabolomics. Molecular Biosystems. 4: 980-986. https://doi.org/10.1039/b805354e
  26. White JA, Hart RJ, Fry JC. 1986. An evaluation of the waters Pico-Tag system for the amino-acid analysis of food materials. Journal of Clinical Laboratory Automation. 8(4): 170-177.
  27. Xu ZH, Prasolova NV, Lundkvist K, Beadle C, Leaman T. 2003. Genetic variation in branchlet carbon and nitrogen isotope composition and nutrient concentration of 11-year-old hoop pine families in relation to tree growth in subtropical Australia. Forestry Ecology and Management. 186: 359-371. https://doi.org/10.1016/S0378-1127(03)00304-9
  28. Yamaguchi S. 2008. Gibberellin metabolism and its regulation. Annual Review Plant Biology. 59: 225-251. https://doi.org/10.1146/annurev.arplant.59.032607.092804