DOI QR코드

DOI QR Code

Analysis of Generalized Extreme Value Distribution to Estimate Storm Sewer Capacity Under Climate Change

기후변화에 따른 하수관거시설의 계획우수량 산정을 위한 일반극치분포 분석

  • 이학표 (하수관거 관리기술연구단) ;
  • 류재나 (하수관거 관리기술연구단) ;
  • 유순유 (하수관거 관리기술연구단) ;
  • 박규홍 (중앙대학교 사회기반시스템공학부)
  • Published : 2012.04.16

Abstract

In this study, statistical analysis under both stationary and non-stationary climate was conducted for rainfall data measured in Seoul. Generalised Extreme Value (GEV) distribution and Gumbel distribution were used for the analysis. Rainfall changes under the non-stationary climate were estimated by applying time variable (t) to location parameter (${\xi}$). Rainfall depths calculated in non-stationary climate increased by 1.1 to 6.2mm and 1.0 to 4.6mm for the GEV distribution and gumbel distribution respectively from those stationary forms. Changes in annual maximum rainfall were estimated with rate of change in the location parameter (${\xi}1{\cdot}t$), and temporal changes of return period were predicted. This was also available for re-evaluating the current sewer design return period. Design criteria of sewer system was newly suggested considering life expectance of the system as well as temporal changes in the return period.

Keywords

References

  1. 권영문 (2009). 강우량 자료의 증가 경향성을 고려한 강우빈도해석. 한양대학교 석사학위논문.
  2. 김병식, 김보경, 경민수, 김형수 (2008). 기후변화가 극한강우와 IDF분석에 미치는 영향 평가. 한국수자원학회논문집, Vol. 41, No 4, pp. 379-394.
  3. 김영호 (2010). 기후변화를 고려한 한반도 주요지점의 확률강우량 산정. 홍익대학교 박사학위논문.
  4. 나양선 (2009). 기후변화에 따른 설계 강우 및 홍수변화에 관한 연구. 세종대학교 석사학위논문.
  5. 서린 (2011). 기후변화를 고려한 목표연도 확률강우량 산정 기법 개발 및 불확실성 분석. 한양대학교 석사학위논문.
  6. 이승춘 (2010). 기후변화에 따른 확률강우량의 지역적 변동성 분석. 단국대학교 석사학위논문.
  7. 임혁진, 권형중, 배덕효, 김성준 (2006). CA-Markov 기법을 이용한 기후변화에 따른 소양강댐 유역의 수문분석. 한국수자원학회논문집, Vol. 39, No.5, pp. 241-245.
  8. 최대규 (2010). 미래기후변화에 대한 영향분석 및 유역단위의 수자원 영향평가. 부경대학교 석사학위 논문.
  9. Bell. V. A., Kay. A.L., Jones. R.G., Moore. R.J. and Reynard. N.S. (2009). Use of soil data in a grid-based hydrological model to estimate spatial variation in changing flood risk across the UK. Journal of Hydrology, Vol.377, No 3-4, pp. 335-350. https://doi.org/10.1016/j.jhydrol.2009.08.031
  10. Coles. G.S. (2001). An Introduction to Statistical Modeling of Extreme Values , Springer.
  11. He, Y., Bárdossy, A. and Brommundt, J. (2006). Non-stationary flood frequency in southern Germany. The 7th Internation Conference on Hydroscience and Engineering.
  12. Mailhot, A. and Duchesne, S. (2010). Design Criteria of Urban Drainage infrastructures under Climate Change. Journal of Water Resources Planning and Management, Vol. 136, No. 2, pp. 201-208. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000023
  13. Ouarda, T.B.M.J. and Adlouni, S.E. (2008). Bayesian inference of non-stationary flood frequency models, World Environmental and Water Resources Congress 2008.
  14. Semadeni-Daviesa, A., Hernebringb, C., Svenssonb, G. and Gustafssonc, L.G. (2008). The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden : Combined sewersystem. Journal of Hydrology, Vol. 350, No. 1-2, pp. 100-113. https://doi.org/10.1016/j.jhydrol.2007.05.028

Cited by

  1. Inundation Analysis of Ground and Underground Spaces in Urban Areas vol.15, pp.6, 2015, https://doi.org/10.9798/KOSHAM.2015.15.6.109
  2. Prediction of Return Periods of Sewer Flooding Due to Climate Change in Major Cities vol.30, pp.1, 2016, https://doi.org/10.11001/jksww.2016.30.1.041
  3. A study on the application of the extreme value distribution model for analysis of probability of exceeding the facility capacity vol.30, pp.4, 2016, https://doi.org/10.11001/jksww.2016.30.4.369