Primary Productivity of Phytoplankton in a Eutrophic River (Kum River System)

부영양 하천(금강)에서 식물플랑크톤의 일차생산력

  • Shin, Myoung-Sun (Department of Environmental Science, Kangwon National University) ;
  • Lee, Yunkyung (Department of Environmental Science, Kangwon National University) ;
  • Park, Ju-Hyun (National Institute of Environmental Research) ;
  • Kim, Bomchul (Department of Environmental Science, Kangwon National University)
  • Published : 2012.01.30

Abstract

The middle and lower reaches of the Kum River system become stagnant in dry seasons with florishing of phytoplankton. In this study primary productivity of phytoplankton were measured by the C-14 uptake method and the P-I model method at seven main stream sites of the Kum River from the Daechung Dam outet to the river mouth. Nutrients (TN, TP, DIP, TIN) concentrations were measured in the mainstream and tributaries and compared with the variation of assimilation number. The range of primary productivity was $40{\sim}4,558mgC{\cdot}m^{-2}{\cdot}day^{-1}$ and it was higher than those of lentic ecosystems in Korea. Average TN and TP were $4.1mgN{\cdot}L^{-1}$, $70.6mgP{\cdot}m^{-3}$, respectively. Tributaries showed higher nutrient concentrations than the main stream. After two major tributaries merged with the discharging water of the Daechung Dam phyotplankton biomass and productivity increased drastically and remained at the similar eutrophic level through the downstream reach to the river mouth. Both dissolved phosphorus and nitrogen concentrations showed positive correlation with assimilation number of phytoplankton. In conclusion phytoplankton productivity is at the level of eutrophic water and it was higher than usual lentic habitats. Nutrient concentrations are critical factors in controlling productivity in the lower reach of the Kum River.

Keywords

References

  1. 금강물환경연구소(2003). 초기담수호의 영양상태가 하류 하천 및 호수수질에 미치는 영향(III), pp. 30-42.
  2. 김동섭, 김범철(1990). 팔당호의 일차생산, 한국하천호수학회지, 23(3), pp. 167-179.
  3. 김미아, 이재관, 조경덕(2007). 다변량분석법을 이용한 금강 유역의 수질오염특성 연구, 수질보전 한국물환경학회지, 23(1), pp. 161-168.
  4. 김범철, 김동섭, 황길순, 최광순, 허우명, 박원규(1996). 부영양한 낙동강수계에서 유기물오염에 대한 조류 1차 생산의 기여도, 한국조류학회지, 11(2), pp. 231-237.
  5. 김종민, 박준대, 노혜란, 한명수(2002). 소양호와 팔당호 수질의 수직 및 계절적 변화, 한국육수학회지, 35(1), pp. 10-20.
  6. 김주화, 박석순(2004). 비모수 통계기법을 이용항 낙동강 수계의 수질 장기 경향 분석, 수질보전 한국물환경학회지, 20(1). pp. 63-71.
  7. 김진호, 김찬용, 이성태, 최철만, 정구복, 이종식, 김원일 (2007). 낙동강수계 농촌유역의 토지이용 및 수질 특성, 한국환경농학회지, 26(2), pp. 99-106.
  8. 김호섭, 황순진(2004). 부영양 저수지에서 식물플랑크톤 성장에 대한 제한영양염과 질소/인 비의 영향, 한국육수학회지, 37(1), pp. 36-46.
  9. 신재기, 조경제(2000). 금강 중.하류에서 AGP에 의한 수질 평가, 한국육수학회지, 33(3), pp. 244-250.
  10. 안광국, 양우미(2007). 금강수계의 수질특성, 한국육수학회지, 40(1), pp. 110-120.
  11. 양성렬, 송환석, 문창호, 권기영, 양한섭(2001). 낙동강 하구역의 담수유입에 따른 해양환경 및 일차생산력 변화, 한국조류학회지, 16(2), pp. 165-177.
  12. 유선재, 김종구, 권태연, 이석모(1999). 금강의 부영양화 현상에 관한 연구, 한국환경과학회지, 8(2), pp. 155-160.
  13. 유순주, 김창수, 하성룡, 황종연, 채민희(2005). 금강 수계 자연 유기물 특성 분석, 수질보전 한국물환경학회지, 21(2), pp. 125-131.
  14. 이석구, 부성민(2000). 금강수계에서 식물플랑크톤의 현존량에 관한 연구, 한국환경생물학회지, 18(3), pp. 347-353.
  15. 임창수(1999). 금강유역 14개 관측점의 수질자료를 이용한 수질의 다변량 분석, 한국환경화학회지, 8(3), pp. 331-336.
  16. 임창수, 신재기, 조경제(2000). 금강 중.하류의 오염양상과 수질평가, 한국육수학회지, 33, pp. 51-60.
  17. 허우명, 김범철, 조규송(1991). 소양호 부영양화에 따른 N/P비의 변화와 남조류 Bloom, 한국육수학회지, 24(4), pp. 283-288.
  18. 황길순, 김동섭, 허우명, 김범철(1994). 대청호의 일차생산과 가두리양어장 및 유역으로부터의 유기물부하량, 한국육수학회지, 27(4), pp. 299-306.
  19. American Public Health Association, American Water Works Association and Water Environment Association (APHA) (1998). Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC, USA.
  20. Basu, B. K. and Pick, F. R. (1997). Phytoplankton and Zoo-plankton Development in a Lowland Temperature River, Journal of Plankton Research, 19, pp. 237-253.
  21. Bennett, J. P., Woodward, J. W., and Shultz, D. J. (1986). Effect of Discharge on the Chlorohyll a Distribution in the Tidally-influenced Potomac River, Estuaries, pp. 250-260.
  22. Cloern, J. E. (1987). Turbidity as a Control on Phytoplankton Biomass and Productivity in Estuaries, Continental Self Research, 7(11-12), pp. 1367-1381.
  23. Cole, J. J., Caraco, N. F., and Peierls, B. (1992). Can Phytoplankton Maintain a Positive Carbon Balance in a Turbid, Freshwater, Tidal estuary?, Limnology and Oceanography, 37, pp. 1608-1617.
  24. Decamps, H., Capblanq, J., and Turenq, J. N. (1984). Lot, in Regulated Rivers, A. Lillehammer and S. J. Saltveit (eds.), Universitetsforlaget AS, Oslo, pp. 495-514.
  25. Gran, G. (1952). Determination of the Equivalence Point in Potentiometric Titrations. PartII, Analyst, 77, pp. 661-671.
  26. Grobbelaar, J. U. (1989). The Contribution of Phytoplankton Productivity in Turbid Freshwater to Their Trophic Status, Hydrobiologia, 173, pp. 127-133.
  27. Grobbelaar, J. U. (1992). Nutrients Verses Physical Factors in Determining the Primary Productivity of Waters with High Inorganic Turbidity, Hydrobiologia, 238, pp. 177-182.
  28. Hynes, H. B. N. (1970). The Ecology of Running Waters, University of Toronto Press, pp. 555.
  29. Jeon, S. I. and Cho, K. J. (2004). Primary Productivity of Phytoplankton in the Shallow and Hypertrophic River (Seonakdong River), Korean Journal of Limnology, 37(1), pp. 57-63.
  30. Jeong, K. S., Kim, D. K., Shin, H. S., Kim, H. W., Cao, H., Jang, M. H., and Joo, G. J. (2010). Flow Regulation for Water Quality (chlorophyll a) Improvement, International Journal of Environmental Research, 4(4), pp. 713-724.
  31. Kim, B. (1987). An Ecological Study of Phytoplankton in Lake Soyang, Ph.D. Thesis, Seoul National University, pp. 79.
  32. Liboriussen, L. and Jeppesen, E. (2003). Temporal Dynamics in Epipelic, Pelagic and Epiphytic Algal Production in a Clear and a Turbid Shallow Lake, Freshwater Biology, 48(3), pp. 418-431.
  33. Lind, O. T., Robert, D., Vodopich, D. S., and Trotter, B. G. (1992). Clay Turbidity: Regulation of Phytoplankton Production in a Large, Nutrient-Rich Tropical Lake, Limnology and Oceanography, 37(3), pp. 549-565.
  34. Naiman, R. J. and Sedell, J. R. (1981). Stream Ecosystem Research in a Watershed Perspective, Verhandlungen Internationale Vereinigung fur Theoretische und Angewandte Limnologie, 21, pp. 804-811.
  35. Namkung, H., Hwang, G., Kim, B., and Kim, K. (2001). Primary Productivity of Phytoplankton at the Eutrophic Down Reach of a Regulated River (the Han River, Korea), Korean Journal of Limnology, 34(4), pp. 267-276.
  36. OAR (Oregon Administrative Rules) (2000). Water Quality Program Rules, 340-041-0150, Nuisance Phytoplankton Growth.
  37. OECD (1982). Eutrophication of Waters: Monitoring, Assessment and Control, OECD, Paris. pp. 154
  38. Platt, T., Gallegos, C. L., and Harrison, W. G. (1980). Photoinhibition of Photosynthesis in Natural Assemblages of Marine Phytoplankton, Journal of Marine Research, 38, pp. 687-701.
  39. Van Nieuwenhuyse, E. E., and Jones, J. R. (1996). Phosphorus-Chlorophyll Relationship in Temperate Streams and Its Variation with Stream Catchment Area, Canadian Journal of Fisheries and Aquatic Sciences, 53, pp. 99-105.
  40. Wehr, J. D. and Descy, J. P. (1998). Use of Phytoplankton in Large River Management, Journal of Phycology, 34, pp. 741-749.
  41. Wetzel, R. G. (1975). Limnology, W. B. Saunders Co., Philadelphia, PA, pp. 767.
  42. Wetzel, R. G. and Liken, G. E. (2001). Limnological Analysis 3rd Ed., Springer, pp. 113-121.