Effect of Surface Cover on the Reduction of NPS Pollution at a Vegetable Field

야채재배 밭에서 지표피복의 비점오염원 저감효과

  • Shin, Minhwan (Division of Agricultural Engineering, Kangwon National University) ;
  • Jang, Jeongryeol (Rural Research Institute, KRC) ;
  • Won, Chulhee (Division of Agricultural Engineering, Kangwon National University) ;
  • Choi, Younghun (Division of Agricultural Engineering, Kangwon National University) ;
  • Shin, Jaeyoung (Division of Agricultural Engineering, Kangwon National University) ;
  • Lim, Kyoung Jae (Division of Agricultural Engineering, Kangwon National University) ;
  • Choi, Joongdae (Division of Agricultural Engineering, Kangwon National University)
  • 신민환 (강원대학교 농업생명과학대학 지역건설공학과) ;
  • 장정렬 (한국농어촌공사 농어촌연구원) ;
  • 원철희 (강원대학교 농업생명과학대학 지역건설공학과) ;
  • 최용훈 (강원대학교 농업생명과학대학 지역건설공학과) ;
  • 신재영 (강원대학교 농업생명과학대학 지역건설공학과) ;
  • 임경재 (강원대학교 농업생명과학대학 지역건설공학과) ;
  • 최중대 (강원대학교 농업생명과학대학 지역건설공학과)
  • Published : 2012.05.30

Abstract

This research was focused on the effect of rice straw and rice straw mat on the reduction of upland field non-point source (NPS) pollution discharges. Six experimental plots of $5{\times}22m$ in size and 3% in slope prepared on gravelly sandy loam soil were treated with control, rice straw cover and rice straw mat cover. Radish in Spring growing seasons were cultivated. NPS pollution discharge was monitored and compared with respect to the treatments. The surface cover rate of rice straw and rice straw mat right after the treatments was 64.7% and 73.7%, respectively. Rainfall of the 16 monitored events ranged from 12.8 mm to 538.2 mm. Runoff coefficient of the events was 0.01~0.67 in control plot, 0~0.63 in rice straw plot and 0~0.45 in rice straw mat plot. The reduction of runoff compared to the control plot was 5.4~99.7% in rice straw plot and 32.9~100% in rice straw mat plot. The reduction of NPS pollution load was 52.0% for SS, 28.5% for T-N and 35.2% for T-P in rice straw plot and 79.8% for SS, 68.3% for T-N and 53.3% for T-P in rice straw mat plot. This research revealed that rice straw mat cover on the soil surface could not only increase the crop yield and farmer's income but also reduce the NPS pollution loads significantly.

Keywords

References

  1. 권영호, 한선임, 이준배(2002). 대청호 유역 오염부하량 산정, 상하수도학회지, 16(5), pp. 581-595.
  2. 기상청(2011). http://www.kma.go.kr/.
  3. 박성천, 오창열, 진영훈, 김동수(2005). 섬진강 유역 농촌지역의 비점오염원 배출특성에 관한 연구, 한국환경과학회지, 14(11), pp. 1057-1062.
  4. 박춘수 외 3인(1999). 토질역학, pp. 78.
  5. 신민환, 원철희, 박운지, 최용훈, 신재영, 임경재, 최중대(2011a). 경사지 밭에서 발생하는 토양유실 저감을 위한 피복재 적용, 한국농공학회지, 53(6), pp. 129-136.
  6. 신민환, 원철희, 박운지, 최용훈, 장정렬, 임경재, 최중대(2011b). 지표피복재 적용을 통한 비점오염원 저감효과 분석, 한국농공학회지, 53(4), pp. 29-37.
  7. 신민환, 원철희, 최용훈, 서지연, 이재운, 임경재, 최중대(2009). 인공강우기에 의한 시험포장 토양유실량 모의 -강우강도, 지표면 및 경사조건 변화-, 수질보전 한국물환경학회지, 25(5), pp. 785-791.
  8. 신민환, 원철희, 최용훈, 서지연, 최중대(2010). 인공강우기에 의한 밭에서의 영양물질 배출특성 모의 -시비량 및 경사도 변화-, 한국농공학회지, 52(3), pp. 31-38.
  9. 원철희, 신민환, 최용훈, 신재영, 박운지, 최중대(2011a). 토양유실 저감을 위한 지표피복재 적용, 수질보전 한국물환경학회지, 27(6), pp. 848-854.
  10. 원철희, 최용훈, 신민환, 신동석, 강동구, 최중대(2011b). 강우시 밭의 비점오염물질 유출 특성, 수질보전 한국물환경학회지, 27(5), pp. 572-579.
  11. 이병수, 정용준, 박무종, 길경익(2008). 경안천 유역 농촌지역의 비점오염원 배출 특성에 관한 연구, 수질보전 한국물환경학회지, 24(2), pp. 169-173.
  12. 최용훈, 원철희, 서지연, 신민환, 양희정, 임경재, 최중대(2009). 평지밭과 고랭지밭의 비점오염에 대한 분석과 비교, 수질보전 한국물환경학회지, 25(5), pp. 682-688.
  13. 환경부(2007). 수질오염공정시험법, pp. 166-167, 182-186, 191-193.
  14. 환경부(2009a). 강우유출수 조사 방법, pp. 2.
  15. 환경부(2009b). 토양오염공정시험기준, pp. 23-25, 26-31.
  16. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop Evapotranspiration - Guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage Paper, No. 56, Rome, Italy, pp. 300.
  17. Choi, J. D., Lee, C. M., and Choi, Y. H. (1999). Effect of Land Use on the Water Quality of Small Agricultural Watersheds in Kangwon-do, Korea Water Resources Association, 32(4), pp. 501-510.
  18. Garcia-Orenes, F., Cerda, A., Mataix-Solera, J., Guerrero, C., and Bodi, M. B. (2009). Effects of Agricultural Management on Surface Soil Properties and Soil-water Losses in Eastern Spain, Soil & Tillage Research, 106, pp. 117-123. https://doi.org/10.1016/j.still.2009.06.002
  19. Ghawi, I. and Battikhi, A. (1986). Water Melon Production under Mulch and Trickle Irrigation in the Jordan Valley, Journal of Agronomy and Crop Science, 157, pp. 145-155. https://doi.org/10.1111/j.1439-037X.1986.tb00062.x
  20. Jin, K., Cornelis, W. M., Gabriels, D., Schiettecatte, W., Neve, S. D., Lu, J., Buysse, T., Wu, J., Cai, D., Jin. J., and Harmann, R. (2008). Soil Management Effects on Runoff and Soil Loss from Field Rainfall Simulation, CATENA, 75, pp. 191-199. https://doi.org/10.1016/j.catena.2008.06.002
  21. Jordan, A., Zavala, L. M., and Gil, J. (2010). Effects of Mulching on Soil Physical Properties and Runoff under Semi-arid Conditions in Southern Spain, CATENA, 81, pp. 77-85. https://doi.org/10.1016/j.catena.2010.01.007
  22. Lal, R. (1976). Soil Erosion on Alfisols in Western Nigeria II Effect of Mulch Rates, Geoderma, 16(5), pp. 377-387. https://doi.org/10.1016/0016-7061(76)90002-1
  23. National Institute of Crop Science (2011). http://www.nics.go.kr/.
  24. Osborn, B. (1954). Effectiveness of Cover on Reducing Soil Splash by Raindrop Impact, Journal of Soil and Water Conservation, 9, pp. 70-76.