Effect of High Intensity Pulsed Light Treatment Conditions on Inactivation of Pathogens

광 펄스 처리 조건에 의한 식중독균 사멸에 미치는 영향

  • Shin, Jung-Kue (Department of Korean Cuisine, JeonJu University) ;
  • Kwon, Oh Yeoun (Department of Food Science and Technology, Hoseo University) ;
  • Park, Min Woo (Department of Food Science and Technology, Hoseo University) ;
  • Son, Seok Min (Department of Food Science and Technology, Hoseo University)
  • 신정규 (전주대학교 한식조리학과) ;
  • 권오연 (호서대학교 식품공학과) ;
  • 박민우 (호서대학교 식품공학과) ;
  • 손석민 (호서대학교 식품공학과)
  • Published : 2012.11.30

Abstract

Most of foods were secured their microbiological safety by heat treatment. However, the quality of food was also reduced by heat treatment. Therefore, non-thermal treatments were recently suggested as an alternative methods for heat treatment. Among the non-thermal treatments, the high intensity pulsed light (IPL) treatment was investigated in this study to find out the most important processing factors for killing the food borne pathogens. First of all, in order to know whether the initial cell concentration affects on death rate, the death rates of two different pathogens were measured at three different intial cell load. As a result, there was no significant different in death rates on two different pathogens. Additionally, the penetration thickness of pulse light showed the most important processing factors on sterilization by IPL treatment in that the survival ratio of bacteria was dramatically increased by increasing the thickness. The lethal effect of surround medium color showed that there was no significance on death rate of bacteria by adsorption of light.

대표적인 2종의 미생물(E. coli, B. subtilis)을 이용하여 초기 미생물 농도에 대한 광 펄스의 영향을 살펴본 결과, 미생물의 사멸율이 초기 농도에 영향을 받지 않았고 25 kV에서 1500 ${\mu}s$ 처리 시 최소 5 log 이상의 미생물 감소를 보인다는 것을 확인할 수 있었다. 그리고 4종의 유해미생물 (B. subtilis, E. coli, S. aureus, S. typhimurium)의 광 펄스 처리시간에 따른 미생물 사멸효과는 모든 미생물이 처리시간에 증가함에 따라 효과가 상승하였고 1500 ${\mu}s$ 처리 시 모든 미생물이 6 log 이상의 감소를 보였다. 또한 광 펄스 처리시간에 따른 미생물 사멸속도는 1차 반응속도와 상응함을 알 수 있었다. 그리고 4종 유해미생물의 배지 두께에 따라 미생물 불활성화 효과에 대한 민감 정도를 알아본 결과 E. coli의 두께 민감 상수가 4.9로 가장 높게 나타났으며 이는 시료의 두께가 증가함에 따라 미생물 사멸효과가 감소하는 것을 알 수 있었다. 마지막으로 여러 가지 색(노랑, 빨강, 파랑, 녹색, 흑색)에 따른 E. coli의 사멸 효과는 유의적인 차이가 없는 것으로 나타났다. 결과적으로 초기 균체농도, 광 펄스 처리 시간, 두께에 따른 미생물 사멸효과의 민감도 등이 실제 식품 적용하기 위한 기초 자료로 활용할 수 있을 것으로 사료된다.

Keywords

References

  1. Cho HY, Shin JK, Song YA, Yoon SJ, Kim JM, Pyun YR. 2002. Nonthermal pasteurization of lactic acid bacteria by high intensity light pulse. Korean J. Food Sci. Technol. 34: 631-636.
  2. Choi MS, Cheigh CI, Jeong EA, Shin JK, Park JY, Song KB. 2009. Inactivation of Enterobacter sakazkii inoculated on fomulated infant foods by intense pulsed light treatment. Food Sci. Biotechnol. 18: 1537-1540.
  3. Dunn J, Ott T, Clark W. 1995. Pulsed-light treatment of food and packaging. Food Technol. 49: 95-98.
  4. Dunn J. 1996. Pulsed light and pulsed electric field for foods and eggs. Poult Sci. 75: 1133-1136. https://doi.org/10.3382/ps.0751133
  5. Ghasemi Z, Macgregor S, Anderson J, Lamont Y. 2003. Development of an integrated solid-state generator for light inactivation of food-related pathogenic bacteria. Meas. Sci. Technol. 14: N26-N32. https://doi.org/10.1088/0957-0233/14/6/402
  6. Krishnamurthy K, Demirci A, Irudayaraj J. 2004. Inactivation of Staphylococcus aureus by pulsed UV-light sterilization. J. Food protection, 67: 1027-1030.
  7. Keyser M, Muller I.A, Cilliers F.P, Nel W, Gouws, P.A. 2008. Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innov. Food Sci. Emerg. Technol. 9: 348-354. https://doi.org/10.1016/j.ifset.2007.09.002
  8. Marquenie D, Geeraerd A.H., Lammertyn L, Sontjens C, Vanimpe J.F., Michiels C.W. 2003. Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena. Int. J. Food Microbiol. 85: 185-196. https://doi.org/10.1016/S0168-1605(02)00538-X
  9. Roberts P, Hope A. 2003. Virus inactivation by high intensity broad spectrum pulsed light. J. Virological Methods. 110: 61-65. https://doi.org/10.1016/S0166-0934(03)00098-3
  10. Rowan NJ, MacGregor SJ, Anderson JG, Fouracre RA, Mcllvaney L, Farish O. 1999. Pulsed-light inactivation of food-related microorganism. Appl. Environ. Microbiol. 65: 1312-1315.
  11. Sharma RR, Demirci A. 2003. Inactivation of Escherichia coli O157:H7 on inoculated alfalfa seeds with pulsed ultraviolet light and response surface modeling. J. Food Sci. 68: 1448-1453. https://doi.org/10.1111/j.1365-2621.2003.tb09665.x
  12. Shin JK, Kim BR, Kim AJ. Nonthermal Food Processing Technology using Electric Power. Food Sci. Ind. 43: 21-34.
  13. Son SM, Shin JK. 2008. The effect of environmental factors on inactivation of Saccharomyces cerevisiae by high voltage pulsed electric fields. Food Eng. Prog. 12: 154-162.
  14. Takeshita K, Shibato J, Sameshima T, Fukunaga S, Isobe S, Arihara K, Itoh M. 2003. Damage of yeast cells induced by pulsed light irradiation. Int. J. Food Microbiol. 85: 151-158. https://doi.org/10.1016/S0168-1605(02)00509-3
  15. Zhang QH, Barbosa-canovas GV, Swanson BG. 1995. Inactivation of E. coli for food pasteurization by high-strength pulsed electric fields. J. Food Pro. Preserv. 19: 103-188. https://doi.org/10.1111/j.1745-4549.1995.tb00281.x