DOI QR코드

DOI QR Code

Char Oxidation Characteristics of Ashless Coal in Drop Tube Furnace

DTF를 이용한 초청정 석탄 촤 산화 반응률 특성 연구

  • Kim, Sang-In (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lee, Byoung-Hwa (Pusan National University, Pusan Clean Coal Center) ;
  • Lim, Ho (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Yu, Da-Yeon (School of Mechanical Engineering, Pusan Nat'l Univ.) ;
  • Lee, Si-Hyun (Korea Institute of Energy Research (KIER)) ;
  • Jeon, Chung-Hwan (School of Mechanical Engineering, Pusan Nat'l Univ.)
  • 김상인 (부산대학교 기계공학부) ;
  • 이병화 (부산대학교 화력발전에너지분석기술센터) ;
  • 임호 (부산대학교 기계공학부) ;
  • 유다연 (부산대학교 기계공학부) ;
  • 이시훈 (한국에너지기술연구원) ;
  • 전충환 (부산대학교 기계공학부)
  • Received : 2011.08.16
  • Accepted : 2012.05.07
  • Published : 2012.07.01

Abstract

The char oxidation characteristics of ashless coal with a relatively low ash content and high heating value were experimentally investigated at several temperatures (from $900^{\circ}C$ to $1300^{\circ}C$), in various oxygen concentrations (from 10% to 30%) under atmospheric pressure in a drop tube furnace. The char reaction rate was calculated from the exhaust gas concentrations (CO, $CO_2$) measured by FT-IR, and the particle temperature was measured by the two-color method. In addition, the activation energy and pre-exponential factor of ashless coal char were also calculated based on the Arrhenius equation. The results show that higher temperature and oxygen concentration result in a higher reaction rate of ashless coal, and the activation energy of ashless coal char is similar to that of bituminous coal.

본 연구는 낮은 회 성분의 함량과 높은 발열량의 특성을 지닌 초청정 석탄의 촤 반응율 특성을 알아보았다. 실험은 DTF(Drop Tube Furnace)를 통해서 다양한 온도조건 하에 산소의 분율을 바꾸어가며 수행하였다. 촤 반응률을 도출하기 위하여 FT-IR을 통해 배기가스(CO, $CO_2$)를 측정하였으며, 이색온도계를 통하여서 입자 온도를 측정하였다. 또한, Arrhenius 경험식을 토대로 초청정 석탄 촤의 활성화 에너지와 빈도인자를 도출하였다. 결과는 초청정 석탄 촤의 반응특성은 온도와 산소 분율이 높아질수록 뚜렷한 증가를 보였고, 초청정 석탄 촤의 활성화 에너지는 역청탄의 수치와 비슷한 값을 보임을 알 수 있었다.

Keywords

References

  1. Smith, I.W., 1982, "The Combustion Rates of Coal Char," 19th International symposium on Combustion, The Combustion Institute, Pittsburgh, pp. 1045-1065.
  2. Steel, K.M., Besida, J., O'Donnell, T.A. and Wood, D.G., 2001, "Production of Ultra Clean Coal: Part I-Dissolution Behaviour of Mineral Matter in Black Coal Toward Hydrochloric and Hydrofluoric Acids," Fuel Processing Technol, pp. 171-192.
  3. Lee, S.H., Kim, S.D., Jeong, S.K., Rhim Y.J., Kim, D.G. and Woo, K.J., 2008, "Ultrasonic Effect on the Extraction of Ash-free Coal from Low Rank Coal," Korean Chem. Eng. Res., Vol. 46, No. 3, pp. 555-560.
  4. Lee, B.H., Song, J.H., Kang, G.T., Chang, Y.J. and Jeon, C.H., 2009, "Determine of Char Oxidation Rates with Diffrent Analytical Methods," Trans of the KSME(B), Vol. 33, No. 11, pp. 876-885.
  5. Waters, B.J., Squires, R.G., Laurendeau, N.M. and Mitchell, R.E., 1988, Combustion and Flame, Vol. 74, pp. 91-106. https://doi.org/10.1016/0010-2180(88)90089-2
  6. Mitchell, R.E., Kee, R.J., Glarborg, P. and Coltrin, M.E., 1988, 22th International Symposium on Combustion, The Combustion Institute, Pittusburgh, pp. 69-78.
  7. Mitchell, R.E., Kee, R.J., Glarborg, P. and Coltrin, M.E., 1990, 23th international Symposium on Combustion, The Combustion Institute, Pittusburgh, pp. 1169-1176.
  8. Essenghigh, R.H., 1991, Energy and fuels, Vol. 5, pp. 41-46. https://doi.org/10.1021/ef00025a005
  9. Monson, C.R., Germane, G.J., Blackham A.U. and Smoot, L.D, 1995, "Char Oxidation at Elevated Pressures," Compustion and Flame, Vol. 100, pp. 669-683. https://doi.org/10.1016/0010-2180(94)00178-U
  10. Kang, G.T., Lee, C.S., Song, J.H., Chang, Y.J. and Jeon, C.H., 2009, "An Experiment Study for Char Oxidation Kinetics on a Sub-bituminous Coal," KSME, Vol. 9, No. 20, pp. 239-246
  11. Monson, C.R., 1992. "Char Oxidation at Elevated Pressure," Department of Mechanical Engineering, BYU.