DOI QR코드

DOI QR Code

A Study on Inhibitory Mechanism of Melia Fructus Extract on Osteoclast Differentiation

천연자(川楝子)의 파골세포 분화 억제기전 연구

  • Yun, Young-Jin (Dept. of Oriental Gynecology, College of Oriental Medicine, Kyung-Hee University) ;
  • Lee, Jin-Moo (Dept. of Oriental Gynecology, College of Oriental Medicine, Kyung-Hee University) ;
  • Lee, Chang-Hoon (Dept. of Oriental Gynecology, College of Oriental Medicine, Kyung-Hee University) ;
  • Jang, Jun-Bock (Dept. of Oriental Gynecology, College of Oriental Medicine, Kyung-Hee University) ;
  • Lee, Kyung-Sub (Dept. of Oriental Gynecology, College of Oriental Medicine, Kyung-Hee University)
  • 윤영진 (경희대학교 한의과대학 한방부인과교실) ;
  • 이진무 (경희대학교 한의과대학 한방부인과교실) ;
  • 이창훈 (경희대학교 한의과대학 한방부인과교실) ;
  • 장준복 (경희대학교 한의과대학 한방부인과교실) ;
  • 이경섭 (경희대학교 한의과대학 한방부인과교실)
  • Received : 2012.04.27
  • Accepted : 2012.05.15
  • Published : 2012.05.25

Abstract

Objectives: This study was conducted to evaluate the inhibitory effect of Melia Fructus extract on osteoclast differentiation. Methods: MTT-assay was performed to estimate cytotoxicity of Melia Fructus extract in BMMs stimulated with M-CSF. TRAP staining, TRAP activity and Real-time PCR were performed to know the inhibitory effect on osteoclast differentiation. Actin ring formation were analysed to observe the effect of Melia Fructus extract. Results: Melia Fructus extract decreased the number of TRAP positive cells and the expression of NFATc1 gene, c-Fos gene, TRAP and OSCAR in BMMs stimulated with RANKL. Melia Fructus extract has no cytotoxicity at the concentration used in this study. Melia Fructus extract restrained the formation of actin ring. Melia Fructus inhibited NF-${\kappa}B$ activity by inducing degradation of p-$IkB{\alpha}$. Conclusions: Melia Fructus has the inhibitory effect of osteocalst differentiation and bone resorption. Further studies are needed to treat osteoporosis by herbal medicine containing Melia Fructus.

Keywords

References

  1. 정호연. 골다공증 진단 및 치료 지침 2007. 대한내분비학회지. 2008;23(2):76-108.
  2. Roodman GD. Mechanisms of bone metastasis. N Engl J Med. 2004; 350:1655-64. https://doi.org/10.1056/NEJMra030831
  3. Del FA, Teti A, Rucci N. Osteoclast receptors and signaling. Arch Biochem Biophys. 2008;473:147-60. https://doi.org/10.1016/j.abb.2008.01.011
  4. Burge R et al. Incidence and economic burden of osteoporosis-related fractures in the United States. J Bone Miner Res. 2007;22:465-75. https://doi.org/10.1359/jbmr.061113
  5. Delmas PD. Treatment of postmenopaual osteoporosis. Lancet. 2002;359:2018-26. https://doi.org/10.1016/S0140-6736(02)08827-X
  6. Hidaka S. Natural products with potential for osteoporosis examined in vivo and in vitro. J Trad Med. 2009;26:1-10.
  7. 곽한복 등. 녹용 물 추출물의 파골세포 분화 억제효과. 동의생리병리학회지. 2008;22(4):891-5.
  8. 이승연, 김시나, 김종근. 천문동 추출물에 의한 조골세포 분화 촉진 및 파골세포 생성 억제효과. 한국식품영양과학회지. 2008;37(1):16-9.
  9. 김주호 등. 우슬의 파골세포 분화 억제와 골 흡수 억제효과. 대한본초학회지. 2010;25(1):65-74.
  10. 양나래. 우고닌-하이드로젤 지지체의 파골세포 분화 억제 효과, 서울:경희대학교 대학원. 2011.
  11. 김은경. 홍화자의 파골세포 분화 억제 효과. 서울:경희대학교 대학원. 2011.
  12. 전국한의과대학 본초학교수. 본초학. 서울:영림사. 1999:358.
  13. 이효승 등. 마우스 대식세포에서 천련자(川楝子)의 항산화 및 항염증 효과. 대한본초학회지. 2008;23(4):121-34.
  14. 김부생 등. 川煉子 성분이 간기능에 미치는 영향에 관한 연구 III. -Melianone과 28-deacetyl sendanin의 약물 대사효소계 및 담즙분비에 미치는 영향. 생약학회지. 1996;27(1):47-52.
  15. 이구현 등. 천련자가 만성 비세균성 전립선염 Rat 모델에서 혈액 및 세포조직의 변화에 미치는 영향. 대한본초학회지. 2007;22(4):145-53.
  16. 윤우경, 김동철. 천련자 메탄올 추출물이 Bcl-2 발현 억제를 통해 유방암세포의 자멸사에 미치는 영향. 대한한방부인과학회지. 2008;21(3):18-33.
  17. 이준원. 생약의 파골 세포 분화 저해활성 검색. 생약학회지. 2009;40(2):83-8.
  18. 양유걸. 황제내경역해. 서울:성보사. 1980:소문 6, 52, 90, 210, 269, 337, 338, 340, 399, 영추 89, 104.
  19. 김동균, 류지윤, 이언정. 腎主骨에 관한 東西醫學的 考察. 대한한방내과학회지. 1991;12(2):26-9.
  20. 김종환. 골다공증에 관한 문헌적 고찰-주로 최근의 한의학적 임상 및 실험논문을 중심으로. 대한침구학회지. 1998;15(2):437-54.
  21. 허준. 동의보감. 서울:법인문화사. 1999:765.
  22. 이효정 등. 천연물 추출물의 파골세포 분화억제 효과 검색. 한국식품과학회지. 2005;37(6):997-1004.
  23. Vaananen HK, Horton M. The osteoclast clear zone is a specialized cell extracellular matrix adhension structure. J Cell Sci. 1995;108:2729-32.
  24. Teitelbaum SL. Osteoclasts: what do they do and how do they do it? Am J Pathol. 2007;170(2):427-35. https://doi.org/10.2353/ajpath.2007.060834
  25. Faccio R et al. Dynamic changes in the osteoclast cytoskeleton in response to growth factors and cell attachment are controlled by beta3 integrin. J Cell Biol. 2003;162(3):499-509. https://doi.org/10.1083/jcb.200212082
  26. Nakamura I et al. IL-1 regulates cytoskeletal organization in osteoclasts via TNF receptor-associated factor 6/c-Src complex. J Immunol. 2002; 168(10):5103-9. https://doi.org/10.4049/jimmunol.168.10.5103
  27. Burgess TL et al. The ligand for osteoprotegerin(OPGL) directly activates mature osteoclasts. J Cell Biol. 1999; 145(3):527-38. https://doi.org/10.1083/jcb.145.3.527
  28. Murakami H et al. Tiludronate inhibits protein tyrosine phosphatase activity in osteoclasts. Bone. 1997;20(5):399-404. https://doi.org/10.1016/S8756-3282(97)00025-2
  29. Takayanagi H et al. Induction and activation of the transcription factor NFATc1(NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;3:889-901. https://doi.org/10.1016/S1534-5807(02)00369-6
  30. Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 2007;7:292-304. https://doi.org/10.1038/nri2062
  31. Matsumoto M et al. Essential role of p38 mitogen- activated protein kinase in cathepsin K gene expression during osteoclastogenesis through association of NFATc1 and PU.1. J Biol Chem. 2004;279:45969-79. https://doi.org/10.1074/jbc.M408795200
  32. Kim Y et al. Contribution of NFATc1 to the transcriptional control of immunoreceptor OSCAR but not TREM-2 during osteoclastogenesis. J Biol Chem. 2005;280:32905-13. https://doi.org/10.1074/jbc.M505820200
  33. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337-42. https://doi.org/10.1038/nature01658
  34. Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003; 4(8):638-49. https://doi.org/10.1038/nrg1122