DOI QR코드

DOI QR Code

Clinical performance and failures of zirconia-based fixed partial dentures: a review literature

  • Received : 2011.12.05
  • Accepted : 2012.03.20
  • Published : 2012.05.31

Abstract

PURPOSE. Zirconia has been used in clinical dentistry for approximately a decade, and there have been several reports regarding the clinical performance and survival rates of zirconia-based restorations. The aim of this article was to review the literatures published from 2000 to 2010 regarding the clinical performance and the causes of failure of zirconia fixed partial dentures (FPDs). MATERIALS AND METHODS. An electronic search of English peer-reviewed dental literatures was performed through PubMed to obtain all the clinical studies focused on the performance of the zirconia FPDs. The electronic search was supplemented by manual searching through the references of the selected articles for possible inclusion of some articles. Randomized controlled clinical trials, longitudinal prospective and retrospective cohort studies were the focuses of this review. Articles that did not focus on the restoration of teeth using zirconia-based restorations were excluded from this review. RESULTS. There have been three studies for the study of zirconia single crowns. The clinical outcome was satisfactory (acceptable) according to the CDA evaluation. There have been 14 studies for the study of zirconia FPDs. The survival rates of zirconia anterior and posterior FPDs ranged between 73.9% - 100% after 2 - 5 years. The causes of failure were veneer fracture, ceramic core fracture, abutment tooth fracture, secondary caries, and restoration dislodgment. CONCLUSION. The overall performance of zirconia FPDs was satisfactory according to either USPHS criteria or CDA evaluations. Fracture resistance of core and veneering ceramics, bonding between core and veneering materials, and marginal discrepancy of zirconia-based restorations were discussed as the causes of failure. Because of its repeated occurrence in many studies, future researches are essentially required to clarify this problem and to reduce the fracture incident.

Keywords

References

  1. Haselton DR, Diaz-Arnold AM, Hillis SL. Clinical assessment of high-strength all-ceramic crowns. J Prosthet Dent 2000;83:396-401. https://doi.org/10.1016/S0022-3913(00)70033-3
  2. Olsson KG, Furst B, Andersson B, Carlsson GE. A long-term retrospective and clinical follow-up study of In-ceram alumina FPDs. Int J Prosthodont 2003;16:150-6.
  3. Denry I, Kelly JR. State of the art of zirconia for dental applications. Dent Mater 2008;24:299-307. https://doi.org/10.1016/j.dental.2007.05.007
  4. Guazzato M, Albakry M, Ringer SP, Swain MV. Strength, fracture toughness and microstructure of a selection of all-ceramic materials. Part II. Zirconia-based dental ceramics. Dent Mater 2004;20:449-56. https://doi.org/10.1016/j.dental.2003.05.002
  5. Ortorp A, Kihl ML, Carlsson GE. A 3-year retrospective and clinical follow-up study of zirconia single crowns performed in a private practice. J Dent 2009;37:731-6. https://doi.org/10.1016/j.jdent.2009.06.002
  6. Cehreli MC, Kokat AM, Akca K. CAD/CAM Zirconia vs. slip-cast glass-infiltrated Alumina/Zirconia all-ceramic crowns: 2-year results of a randomized controlled clinical trial. J Appl Oral Sci 2009;17:49-55. https://doi.org/10.1590/S1678-77572009000100010
  7. Beuer F, Stimmelmayr M, Gernet W, Edelhoff D, Guh JF, Naumann M. Prospective study of zirconia-based restorations: 3-year clinical results. Quintessence Int 2010;41:631-7.
  8. Suarez MJ, Lozano JF, Paz Salido M, Martinez F. Three-year clinical evaluation of In-Ceram Zirconia posterior FPDs. Int J Prosthodont 2004;17:35-8.
  9. Vult von Steyern P, Carlson P, Nilner K. All-ceramic fixed partial dentures designed according to the DC-Zirkon technique. A 2-year clinical study. J Oral Rehabil 2005;32:180-7. https://doi.org/10.1111/j.1365-2842.2004.01437.x
  10. Raigrodski AJ, Chiche GJ, Potiket N, Hochstedler JL, Mohamed SE, Billiot S, Mercante DE. The efficacy of posterior three-unit zirconium-oxide-based ceramic fixed partial dental prostheses: a prospective clinical pilot study. J Prosthet Dent 2006;96:237- 44. https://doi.org/10.1016/j.prosdent.2006.08.010
  11. Sailer I, Feher A, Filser F, Luthy H, Gauckler LJ, Scharer P, Franz Hammerle CH. Prospective clinical study of zirconia posterior fixed partial dentures: 3-year follow-up. Quintessence Int 2006;37:685-93.
  12. Sailer I, Feher A, Filser F, Gauckler LJ, Luthy H, Hammerle CH. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int J Prosthodont 2007;20:383-8.
  13. Edelhoff D, Florian B, Florian W, Johnen C. HIP zirconia fixed partial dentures-clinical results after 3 years of clinical service. Quintessence Int 2008;39:459-71.
  14. Molin MK, Karlsson SL. Five-year clinical prospective evaluation of zirconia-based Denzir 3-unit FPDs. Int J Prosthodont 2008;21:223-7.
  15. Tinschert J, Schulze KA, Natt G, Latzke P, Heussen N, Spiekermann H. Clinical behavior of zirconia-based fixed partial dentures made of DC-Zirkon: 3-year results. Int J Prosthodont 2008;21:217-22.
  16. Beuer F, Edelhoff D, Gernet W, Sorensen JA. Three-year clinical prospective evaluation of zirconia-based posterior fixed dental prostheses (FDPs). Clin Oral Investig 2009;13:445-51. https://doi.org/10.1007/s00784-009-0249-5
  17. Sailer I, Gottnerb J, Kanelb S, Hammerle CH. Randomized controlled clinical trial of zirconia-ceramic and metal-ceramic posterior fixed dental prostheses: a 3-year follow-up. Int J Prosthodont 2009;22:553-60.
  18. Schmitt J, Holst S, Wichmann M, Reich S, Gollner M, Hamel J. Zirconia posterior fixed partial dentures: a prospective clinical 3-year follow-up. Int J Prosthodont 2009;22:597-603.
  19. Schmitter M, Mussotter K, Rammelsberg P, Stober T, Ohlmann B, Gabbert O. Clinical performance of extended zirconia frameworks for fixed dental prostheses: two-year results. J Oral Rehabil 2009;36:610-5. https://doi.org/10.1111/j.1365-2842.2009.01969.x
  20. Roediger M, Gersdorff N, Huels A, Rinke S. Prospective evaluation of zirconia posterior fixed partial dentures: four-year clinical results. Int J Prosthodont 2010;23:141-8.
  21. Tsumita M, Kokubo Y, Ohkubo C, Sakurai S, Fukushima S. Clinical evaluation of posterior all-ceramic FPDs (Cercon): a prospective clinical pilot study. J Prosthodont Res 2010;54: 102-5. https://doi.org/10.1016/j.jpor.2010.01.001
  22. Hertzberg RW. Deformation and fracture mechanics of engineering materials. 4th ed. NewYork; USA; John Wiley & Sons Inc; 1995. p. 326-7.
  23. Tinschert J, Natt G, Mohrbotter N, Spiekermann H, Schulze KA. Lifetime of alumina- and zirconia ceramics used for crown and bridge restorations. J Biomed Mater Res B Appl Biomater 2007;80:317-21.
  24. Wang H, Pallav P, Isgro G, Feilzer AJ. Fracture toughness comparison of three test methods with four dental porcelains. Dent Mater 2007;23:905-10. https://doi.org/10.1016/j.dental.2006.06.033
  25. Suputtamongkol K, Tulapornchai C, Teanchai C. Composition and properties of three dental porcelains. Mahidol Dent J 2008;28:1-8.
  26. Cesar PF, Yoshimura HN, Miranda Ju′nior WG, Okada CY. Correlation between fracture toughness and leucite content in dental porcelains. J Dent 2005;33:721-9. https://doi.org/10.1016/j.jdent.2005.02.001
  27. Ong JL, Farley DW, Norling BK. Quantification of leucite concentration using X-ray diffraction. Dent Mater 2000;16:20-5. https://doi.org/10.1016/S0109-5641(99)00079-2
  28. Taskonak B, Borges GA, Mecholsky JJ Jr, Anusavice KJ, Moore BK, Yan J. The effects of viscoelastic parameters on residual stress development in a zirconia/glass bilayer dental ceramic. Dent Mater 2008;24:1149-55. https://doi.org/10.1016/j.dental.2008.01.004
  29. DeHoff PH, Anusavice KJ. Viscoelastic finite element stress analysis of the thermal compatibility of dental bilayer ceramic systems. Int J Prosthodont 2009;22:56-61.
  30. Fischer J, Stawarczyk B, Tomic M, Strub JR, Ha¨mmerle CH. Effect of thermal misfit between different veneering ceramics and zirconia frameworks on in vitro fracture load of single crowns. Dent Mater J 2007;26:766-72. https://doi.org/10.4012/dmj.26.766
  31. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Part II: Zirconia veneering ceramics. Dent Mater 2006;22:857-63. https://doi.org/10.1016/j.dental.2005.11.014
  32. Aboushelib MN, Kleverlaan CJ, Feilzer AJ. Effect of zirconia type on its bond strength with different veneer ceramics. J Prosthodont 2008;17:401-8. https://doi.org/10.1111/j.1532-849X.2008.00306.x
  33. Aboushelib MN, de Jager N, Kleverlaan CJ, Feilzer AJ. Microtensile bond strength of different components of core veneered all-ceramic restorations. Dent Mater 2005;21:984- 91. https://doi.org/10.1016/j.dental.2005.03.013
  34. Gostemeyer G, Jendras M, Dittmer MP, Bach FW, Stiesch M, Kohorst P. Influence of cooling rate on zirconia/veneer interfacial adhesion. Acta Biomater 2010;6:4532-8. https://doi.org/10.1016/j.actbio.2010.06.026
  35. Felton DA, Kanoy BE, Bayne SC, Wirthman GP. Effect of in vivo crown margin discrepancies on periodontal health. J Prosthet Dent 1991;65:357-64. https://doi.org/10.1016/0022-3913(91)90225-L
  36. Tinschert J, Natt G, Mautsch W, Spiekermann H, Anusavice KJ. Marginal fit of alumina-and zirconia-based fixed partial dentures produced by a CAD/CAM system. Oper Dent 2001;26:367-74.
  37. Bindl A, Mormann WH. Marginal and internal fit of all-ceramic CAD/CAM crown-copings on chamfer preparations. J Oral Rehabil 2005;32:441-7. https://doi.org/10.1111/j.1365-2842.2005.01446.x
  38. Komine F, Gerds T, Witkowski S, Strub JR. Influence of framework configuration on the marginal adaptation of zirconium dioxide ceramic anterior four-unit frameworks. Acta Odontol Scand 2005;63:361-6. https://doi.org/10.1080/00016350500264313
  39. Reich S, Wichmann M, Nkenke E, Proeschel P. Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. Eur J Oral Sci 2005;113: 174-9. https://doi.org/10.1111/j.1600-0722.2004.00197.x
  40. Bindl A, Mo¨rmann WH. Fit of all-ceramic posterior fixed partial denture frameworks in vitro. Int J Periodontics Restorative Dent 2007;27:567-75.
  41. Gonzalo E, Sua′rez MJ, Serrano B, Lozano JF. Marginal fit of zirconia posterior fixed partial dentures. Int J Prosthodont 2008;21:398-9.
  42. Reich S, Kappe K, Teschner H, Schmitt J. Clinical fit of fourunit zirconia posterior fixed dental prostheses. Eur J Oral Sci 2008;116:579-84. https://doi.org/10.1111/j.1600-0722.2008.00580.x
  43. Vigolo P, Fonzi F. An in vitro evaluation of fit of zirconium-oxide- based ceramic four-unit fixed partial dentures, generated with three different CAD/CAM systems, before and after porcelain firing cycles and after glaze cycles. J Prosthodont 2008;17: 621-6. https://doi.org/10.1111/j.1532-849X.2008.00366.x
  44. Att W, Komine F, Gerds T, Strub JR. Marginal adaptation of three different zirconium dioxide three-unit fixed dental prostheses. J Prosthet Dent 2009;101:239-47. https://doi.org/10.1016/S0022-3913(09)60047-0
  45. Beuer F, Aggstaller H, Edelhoff D, Gernet W, Sorensen J. Marginal and internal fits of fixed dental prostheses zirconia retainers. Dent Mater 2009;25:94-102. https://doi.org/10.1016/j.dental.2008.04.018
  46. Beuer F, Naumann M, Gernet W, Sorensen JA. Precision of fit: zirconia three-unit fixed dental prostheses. Clin Oral Investig 2009;13:343-9. https://doi.org/10.1007/s00784-008-0224-6
  47. Dittmer MP, Borchers L, Stiesch M, Kohorst P. Stresses and distortions within zirconia-fixed dental prostheses due to the veneering process. Acta Biomater 2009;5:3231-9. https://doi.org/10.1016/j.actbio.2009.04.025
  48. Gonzalo E, Suarez MJ, Serrano B, Lozano JF. A comparison of the marginal vertical discrepancies of zirconium and metal ceramic posterior fixed dental prostheses before and after cementation. J Prosthet Dent 2009;102:378-84. https://doi.org/10.1016/S0022-3913(09)60198-0
  49. Kohorst P, Brinkmann H, Li J, Borchers L, Stiesch M. Marginal accuracy of four-unit zirconia fixed dental prostheses fabricated using different computer-aided design/computer-aided manufacturing systems. Eur J Oral Sci 2009;117:319-25. https://doi.org/10.1111/j.1600-0722.2009.00622.x
  50. Kohorst P, Brinkmann H, Dittmer MP, Borchers L, Stiesch M. Influence of the veneering process on the marginal fit of zirconia fixed dental prostheses. J Oral Rehabil 2010;37:283-91. https://doi.org/10.1111/j.1365-2842.2009.02053.x

Cited by

  1. Comparison of two fracture toughness testing methods using a glass-infiltrated and a zirconia dental ceramic vol.5, pp.1, 2013, https://doi.org/10.4047/jap.2013.5.1.36
  2. Implant-supported fixed restoration of post-traumatic mandibular defect accompanied with skin grafting: A clinical report vol.5, pp.1, 2013, https://doi.org/10.4047/jap.2013.5.1.67
  3. The influence of various core designs on stress distribution in the veneered zirconia crown: a finite element analysis study vol.5, pp.2, 2013, https://doi.org/10.4047/jap.2013.5.2.187
  4. Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia vol.5, pp.3, 2013, https://doi.org/10.4047/jap.2013.5.3.248
  5. Zircônia tetragonal estabilizada por ítria: comportamento mecânico, adesão e longevidade clínica vol.59, pp.352, 2013, https://doi.org/10.1590/S0366-69132013000400021
  6. Zirconia-Based Screw-Retained Prostheses Supported by Implants: A Retrospective Study on Technical Complications and Failures vol.17, pp.6, 2014, https://doi.org/10.1111/cid.12214
  7. Effects of Acid Treatment on Dental Zirconia: An In Vitro Study vol.10, pp.8, 2015, https://doi.org/10.1371/journal.pone.0136263
  8. Functional and esthetical full mouth rehabilitation with implant supported prostheses: A case report vol.53, pp.1, 2015, https://doi.org/10.4047/jkap.2015.53.1.81
  9. Effects of core characters and veneering technique on biaxial flexural strength in porcelain fused to metal and porcelain veneered zirconia vol.7, pp.5, 2015, https://doi.org/10.4047/jap.2015.7.5.349
  10. Comparison of implant versus tooth-supported zirconia-based single crowns in a split-mouth design: a 4-year clinical follow-up study vol.20, pp.9, 2016, https://doi.org/10.1007/s00784-016-1763-x
  11. Superimposition: a simple method to minimize occlusal adjustment of monolithic restoration vol.54, pp.3, 2016, https://doi.org/10.4047/jkap.2016.54.3.253
  12. Effect of ceramic thickness, grinding, and aging on the mechanical behavior of a polycrystalline zirconia vol.31, pp.0, 2017, https://doi.org/10.1590/1807-3107bor-2017.vol31.0082
  13. Fracture resistance of zirconia-composite veneered crowns in comparison with zirconia-porcelain crowns vol.36, pp.3, 2017, https://doi.org/10.4012/dmj.2016-298
  14. Experimental Evaluation of Fracture Pattern in Bilayered All-Ceramic Molar Crowns vol.376, pp.1662-9507, 2017, https://doi.org/10.4028/www.scientific.net/DDF.376.101
  15. Effect of coloring agent on the color of zirconia vol.55, pp.1, 2017, https://doi.org/10.4047/jkap.2017.55.1.18
  16. Full mouth rehabilitation of edentulous patient with intellectual disability using implants and monolithic zirconia vol.55, pp.2, 2017, https://doi.org/10.4047/jkap.2017.55.2.156
  17. Rehabilitation in a patient with limited restorable space using double scanning technique: A case report vol.55, pp.2, 2017, https://doi.org/10.4047/jkap.2017.55.2.205
  18. Type of Failure of Zirconia-Based Ceramics in Dental Laboratory in Misurata, Libya vol.575, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.575.22
  19. Effect of margin design on fracture load of zirconia crowns pp.09098836, 2019, https://doi.org/10.1111/eos.12593
  20. Evaluation of the Effect of Different Types of Abrasive Surface Treatment before and after Zirconia Sintering on Its Structural Composition and Bond Strength with Resin Cement vol.2018, pp.2314-6141, 2018, https://doi.org/10.1155/2018/1803425
  21. Aesthetic restoration n patients with unaesthetic maxillary anterior teeth using double scan : A case report vol.56, pp.2, 2018, https://doi.org/10.4047/jkap.2018.56.2.166
  22. The effect of ceramic primer on shear bond strength of resin composite cement to zirconia vol.144, pp.11, 2012, https://doi.org/10.14219/jada.archive.2013.0055
  23. Experimental and finite element study of residual thermal stresses in veneered Y-TZP structures vol.42, pp.7, 2012, https://doi.org/10.1016/j.ceramint.2016.03.018
  24. Structural and Morphological Evaluation of Presintered Zirconia following Different Surface Treatments vol.19, pp.2, 2012, https://doi.org/10.5005/jp-journals-10024-2230
  25. Y-TZP surface behavior under two different milling systems and three different accelerated aging protocols vol.67, pp.6, 2012, https://doi.org/10.23736/s0026-4970.18.04138-9
  26. Effect of Incisal Porcelain Veneering Thickness on the Fracture Resistance of CAD/CAM Zirconia All-Ceramic Anterior Crowns vol.2019, pp.None, 2012, https://doi.org/10.1155/2019/6548519
  27. Influence of heating rate on the flexural strength of monolithic zirconia vol.11, pp.4, 2012, https://doi.org/10.4047/jap.2019.11.4.202
  28. “CAD‐on” Interfaces - Fracture Mechanics Characterization vol.28, pp.9, 2019, https://doi.org/10.1111/jopr.13113
  29. Comparison of stress analysis for dental crown (FPD) for various materials vol.45, pp.p9, 2012, https://doi.org/10.1016/j.matpr.2020.12.838
  30. Technical and Biological Complications of Screw-Retained (CAD/CAM) Monolithic and Partial Veneer Zirconia for Fixed Dental Prostheses on Posterior Implants Using a Digital Workflow: A 3-Year Cross-Sec vol.2021, pp.None, 2012, https://doi.org/10.1155/2021/5581435
  31. Evaluation of Changes in Temperature of Zirconia Frameworks During Grinding Under Different Chair-Side Conditions: An In Vitro Study vol.12, pp.1, 2021, https://doi.org/10.1177/2320206820953947
  32. Effect of mastication simulation on the phase transformation of posterior 3-unit monolithic zirconia fixed dental prostheses vol.126, pp.6, 2012, https://doi.org/10.1016/j.prosdent.2021.09.022