DOI QR코드

DOI QR Code

Projection of Extreme Precipitation at the end of 21st Century over South Korea based on Representative Concentration Pathways (RCP)

대표농도경로 (RCP)에 따른 21세기 말 우리나라 극한강수 전망

  • Sung, Jang Hyun (Climate Research Laboratory, National Institute of Meteorological Research, KMA) ;
  • Kang, Hyun-Suk (Climate Research Laboratory, National Institute of Meteorological Research, KMA) ;
  • Park, Suhee (Climate Research Laboratory, National Institute of Meteorological Research, KMA) ;
  • Cho, ChunHo (Climate Research Laboratory, National Institute of Meteorological Research, KMA) ;
  • Bae, Deg Hyo (Department of Civil and Environmental Engineering, Sejong University) ;
  • Kim, Young-Oh (Department of Civil and Environmental Engineering, Seoul National University)
  • 성장현 (기상청 국립기상연구소 기후연구과) ;
  • 강현석 (기상청 국립기상연구소 기후연구과) ;
  • 박수희 (기상청 국립기상연구소 기후연구과) ;
  • 조천호 (기상청 국립기상연구소 기후연구과) ;
  • 배덕효 (세종대학교 건설환경공학과) ;
  • 김영오 (서울대학교 건설환경공학부)
  • Received : 2012.02.22
  • Accepted : 2012.03.19
  • Published : 2012.06.30

Abstract

Representative Concentration Pathways (RCP) are the latest emission scenarios recommended to use for the fifth assessment report of Intergovernmental Panel on Climate Change. This study investigates the projection of extreme precipitation in South Korea during the forthcoming 21st Century using the generalized extreme value (GEV) analysis based on two different RCP conditions i.e., RCP 4.5 and 8.5. Maximum daily precipitation required for GEV analysis for RCP 4.5 and 8.5 are obtained from a high-resolution regional climate model forced by the corresponding global climate projections, which are produced within the CMIP5 framework. We found overall increase in frequency of extreme precipitation over South Korea in association with climate change. Particularly, daily extreme precipitation that has been occurred every 20 years in current climate (1980~2005) is likely to happen about every 4.3 and 3.4 years by the end of 21st Century (2070~2099) under the RCP 4.5 and 8.5 conditions, respectively.

Keywords

References

  1. 국립기상연구소, 2011: IPCC 5차 평가보고서 대응을 위한 기후변화 시나리오 보고서 2011. 2pp.
  2. 서초구, 2011: 2011년도 수해복구 현안업무 보고. 1pp
  3. 신진호, 이효신, 권원태, 2010: 역학적 상세화 기법을 활용한 우리나라 극한 강수사상 전망: 일최대강수량 변화 분석, 한국수자원학회 학술발표회 초록집, 2010.5, 350pp.
  4. 오태석, 문영일, 오근택, 2008: 군집분석과 변동핵밀도함수를 이용한 지역빈도해석의 확률강우량 산정. 대학토목학회 논문집, 28(2B), 169-278.
  5. 이경미, 성장현, 김영오, 이승호, 2011: 한국에서 평균기온 및 극한기온의 변화시점 분석. 대한지리학회지, 46(5), 583-596.
  6. 이창환, 안재현, 김태웅, 2010: 비정상성 강우빈도해석법에 의한 확률강우량의 평가. 한국수자원학회 논문집, 43(2), 187-199.
  7. 정대일, 제리 스테딘져, 성장현, 김영오, 2008: 기후변화를 고려한 홍수 위험도 평가. 대한토목학회 논문집, 28(1B), 55-64.
  8. 허준행, 이영석, 신홍준, 김경덕, 2007: 우리나라 강우자료의 지역빈도해석 적용성. 대한토목학회 논문집, 27(2B), 101-111.
  9. Beniston, M., and Coauthors, 2007: Future extreme events in European climate: An exploration of regional climate model projections. Climatic Change, 81, 71-95.
  10. Boo, K.-O., W.-T. Kwon, J.-H. Oh, and H.-J. Baek, 2004: Response of global warming on regional climate change over Korea: an experiment with the MM5 model. Geophys. Res. Lett., 31, L21206, DOI:10.1029/2004 GL021171.
  11. Boo, K.-O., W.-T. Kwon, and H.-J. Baek, 2006: Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change. Geophys. Res. Lett., 33, L01701, doi: 10.1029/2005GL023378.
  12. Chang, H., and W.-T. Kwon, 2007: Spatial variation of summer precipitation trends in South Korea, 1973-2005. Environ. Res. Lett., doi: 10.1088/1748-9326/2/4/045012.
  13. Collins, W. J., N. Bellouin, M. Doutriaux-Boucher, N. Gedney, T. Hinton, C. D. Jones, S. Liddicoat, and G. Martin, F. O'Connor, J. Rae, C. Senior, I. Totterdell, S. Woodward, T. Reichler, and J. Kim, 2008: Evaluation of HadGEM2 model, Hadley Centre Technical Note, 74, 44.
  14. Ganguly, A. R. , 2007: Climate extremes hydrometeorological extremes and impacts, fall creek Falls 2007 Workshop (www.ccs.ornl.gov)
  15. Greenwood, J. A., J. M. Landwehr, N. C. Matalas, and J. R. Wallis, 1979: Probability weighted moments: definition and relation to parameters of several distributions expressible inverse form. Water Resources Research, 15, 1049-1054. https://doi.org/10.1029/WR015i005p01049
  16. Hosking, J. R., J. R. Wallis, and E. F. Wood, 1985: Estimation of the GEV distribution by the method of probabilityweighted moment. Technometrics, 27(3), 251-261. https://doi.org/10.1080/00401706.1985.10488049
  17. Hosking, J. R., and J. R. Wallis, 1997: Regional frequency analysis: an approach based on L-moments. Cambridge University Press, Cambridge, U.K.
  18. Im, E.-S., and W.-T. Kwon, 2007: Characteristics of extreme climate sequences over Korea using a regional climate change scenario. SOLA, 3, 17-20. https://doi.org/10.2151/sola.2007-005
  19. Koo, G.-S., K.-O. Boo, and W.-T. Kwon, 2009: Projection of temperature over Korea using an MM5 regional climate simulation. Climate Research, 40, 241-248. https://doi.org/10.3354/cr00825
  20. Lu, L., and J. R. Stedinger, 1992: Variance of 2- and 3-paremeter GEV/PWM quantile estimators: formulas, confidence intervals and a comparison, Journal of Hydrology, 138, 247-268. https://doi.org/10.1016/0022-1694(92)90167-T
  21. Martin, E. S., and J. R. Stedinger, 2000: Generalized maximum likelihood GEV quantile estimator for hydrologic data. Water Resources Research, 28(11), 3001-3010.
  22. May, W., 2008: Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional climate model. Climate Dyn., 30, 581-603. https://doi.org/10.1007/s00382-007-0309-y
  23. Moss, R., M. Babiker, S. Brinkman, E. Calvo, T. Carter, J. Edmonds, I. Elgizouli, S. Emori, L. Erda, K. Hibbard, R. Jones, M. Kainuma, J. Kelleher, J. F. Lamarque, M. Manning, B. Matthews, J. Meehl, L. Meyer, J. Mitchell, N. Nakicenovic, B. O'Neill, R. Pichs, K. Riahi, S. Rose, P. Runci, R. Stouffer, D. van Vuuren, J. Weyant, T. Wilbanks, J. P. van Ypersele, and M. Zurek, 2008: Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. Intergovernmental Panel on Climate Change, Geneva, 132 pp.
  24. Park, J.-S., H.-S. Kang, Y. S. Lee, and M.-K. Kim, 2010: Changes in the extreme daily rainfall in South Korea. International Journal of Climatology, DOI: 10.1002/joc.2236
  25. Stedinger, J. R., R. M. Vogel, and E. Foufoula-Georgiou, 1993: Chapter 18, Frequency analysis of extreme events, Handbook of Hydrology, edited by Maidment, D. R., McGraw-Hill.
  26. Um, M.-J., W. Cho., and J.-H. Heo, 2010: A comparative study of the adaptive choice of thresholds in extreme hydrologic events. Stoch. Environ. Res. Risk Assess., 24, 611-623. https://doi.org/10.1007/s00477-009-0348-5
  27. Walters, D. N., M. J. Best, A. C. Bushell, D. Copsey, J. M. Edwards, P. D. Falloon, C. M. Harris, A. P. Lock, J. C. Manners, C. J. Morcrette, M. J. Roberts, R. A. Stratton, S. Webster, J. M. Wilkinson, M. R. Willett, I. A. Boutle, P. D. Earnshaw, P. G. Hill, C. MacLachlan, G. M. Martin, W. Moufouma-Okia, M. D. Palmer, J. C. Petch, G. G. Rooney, A. A. Scaife, and K. D., 2011: The Met office unified model global atmosphere 3.0/3.1 and JULES global land 3.0/3.1 configurations, Geosci. Model Dev. Discuss., 4, 1213-1271. https://doi.org/10.5194/gmdd-4-1213-2011

Cited by

  1. Projection of Future Water Supply Sustainability in Agricultural Reservoirs under RCP Climate Change Scenarios vol.56, pp.4, 2014, https://doi.org/10.5389/KSAE.2014.56.4.059
  2. Correction of Mean and Extreme Temperature Simulation over South Korea Using a Trend-preserving Bias Correction Method vol.25, pp.2, 2015, https://doi.org/10.14191/Atmos.2015.25.2.205
  3. Robust Prioritization of Climate Change Adaptation Strategies Using the VIKOR Method with Objective Weights vol.51, pp.5, 2015, https://doi.org/10.1111/jawr.12291
  4. Regional climate projection over South Korea simulated by the HadGEM2-AO and WRF model chain under RCP emission scenarios vol.63, pp.3, 2015, https://doi.org/10.3354/cr01292
  5. Climate change scenarios for Tibetan Plateau summer precipitation based on canonical correlation analysis vol.37, pp.3, 2016, https://doi.org/10.1002/joc.4778
  6. Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 1: surface air temperature vol.52, pp.2, 2016, https://doi.org/10.1007/s13143-016-0017-9
  7. Projections of high resolution climate changes for South Korea using multiple-regional climate models based on four RCP scenarios. Part 2: precipitation vol.52, pp.2, 2016, https://doi.org/10.1007/s13143-016-0018-8
  8. Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios vol.119, pp.6, 2014, https://doi.org/10.1002/2013JD020693
  9. Reliability–Resiliency–Vulnerability Approach for Drought Analysis in South Korea Using 28 GCMs vol.10, pp.9, 2018, https://doi.org/10.3390/su10093043
  10. Changes in Future Drought with HadGEM2-AO Projections vol.11, pp.2, 2019, https://doi.org/10.3390/w11020312
  11. Statistical multisite simulations of summertime precipitation over South Korea and its future change based on observational data vol.49, pp.5, 2013, https://doi.org/10.1007/s13143-013-0061-7
  12. Sensitivity of future continental United States water deficit projections to general circulation models, the evapotranspiration estimation method, and the greenhouse gas emission scenario vol.20, pp.8, 2016, https://doi.org/10.5194/hess-20-3245-2016
  13. Future Extreme Temperature and Precipitation Mechanisms over the Korean Peninsula Using a Regional Climate Model Simulation vol.39, pp.4, 2018, https://doi.org/10.5467/JKESS.2018.39.4.327