DOI QR코드

DOI QR Code

The analysis of 18F-FDG PET/CT Images According to the Time Flow

시간흐름에 따른 18F-FDG PET/CT의 영상 분석

  • Lee, Hyo-Yeong (Department of Nuclear Medicine, Pusan National University Hospital)
  • 이효영 (부산대학교병원 핵의학과)
  • Received : 2011.11.14
  • Accepted : 2012.02.21
  • Published : 2012.02.28

Abstract

PET/CT is taken 1 hour after $^{18}F$-FDG(F-18-fluoro-2-deoxy-D-glucose) injection. However, these would be often delayed for more than 2 or 3 hours due to equipment fault or unexpected situation. In the study, SUV(standardized uptake value) were measured from got image over time according to the parts of the body. As a result, there were great and small decrease in liver(middle of the right hepatic lobe), fat(Lt pelvis), lung (Rt upper lobe), aorta(ascending aorta level) of the body in delayed image, and ${\Delta}$SUVmax was increase of 37% in bone only(L5 vertebral body) of the body. ${\Delta}$SUVmax was increase of 37.6% in lesion, and the contrast degree was greater because of uptake increase in lesion and uptake decrease in the normal body.

양전자 방출단층 촬영은 $^{18}F$-FDG 주사하고 1시간 후에 촬영한다. 하지만 장비의 결함 또는 예상하지 못한 상황으로 2-3시간정도 경과되어 촬영을 하는 경우가 발생한다. 이에 시간 흐름에 따라 획득된 영상에서 체내 부위별 표준화 섭취계수를 측정하여 다음과 같은 결과를 얻었다. 정상기관 중 정상부위는 간(간우엽 중앙부), 지방(좌측 둔부), 폐(우측 상엽부), 대동맥(상행 대동맥)의 경우는 지연영상에서 크고 작은 감소가 나타났으며, 정상부위 중 유일하게 뼈(제 5요추 체부)에서 ${\Delta}$SUVmax 37%의 증가가 나타났다. 병소부위는 시간의 흐름에 따라 증가함을 보였으며 ${\Delta}$SUVmax는 37.6%증가로 나타났으며 병소의 섭취증가와 정상부위 섭취감소로 대조도의 차이가 커짐을 알 수 있었다.

Keywords

References

  1. 고창순 외. 제3판 핵의학. 고려의학 pp247, 2008.
  2. Zhuang H, Pourdehna M, Lambright ES, Yammoto AJ, Lanuti M, Mozley PD, et al. Dual time Point $^{18}F$-FDG PET imaging for defferentiating malignant from inflammatory processes J Nucl Med ,Vol. 42, pp.1412-7, 2001.
  3. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ. The dose uptake ratio as an index of glucos metabolism:useful parameter or oversimplification? J Nucl Med, Vol. 35, pp.1308-12, 1994.
  4. Yamada S, Kubota K, Kubota R, Ido T, Tamahashi N. High accumulation of fluorine-18-fluorodeoxyglucose in turpentine induced inflammatory tissue. J Nucl Med 36, 1301-6, 1995.
  5. Irrael O, Yefrmov n, Bar-Shalom R, Kaqana O, Frenkel A. PET/CT detection of unexpected gastrointestinal foci of $^{18}F$-FDG uptake: incidence, localization patterns, and clinical signigicance. J Nucl Med 46, pp.758-62, 2005.
  6. Wang Y, Chiu E, Rosenberg J et al Standardized uptake valueatlas: characterization of physiological 2-deoxy-2-[18F]fluoro-D-glucose uptake in normal tissues. Mol Imaging Biol, Vol. 9, pp.83-90, 2007. https://doi.org/10.1007/s11307-006-0075-y
  7. Thie JA. Optimizing dual-time and serial positron emissiontomography and single photon emission computed tomographyscans for diagnoses and therapy monitoring. Mol Imaging Biol, Vol. 9, pp.348-56, 2007. https://doi.org/10.1007/s11307-007-0111-6
  8. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O'Doherty MJ,Smith MA. A PET study of $^{18}F$-FDG uptake in soft tissue masses. Eur J Nucl Med 26, pp.22-30, 1999. https://doi.org/10.1007/s002590050355
  9. PV., Andros, and K.A. Lathrop Argonne; Semi-annual report to the atomic energy comission No. 18, Office of technical services, Department of Commerce, Washington, Vol. 25, D.C., p.7, 1962.

Cited by

  1. Usefulness of Scan Position Change on Dual Time Point PET-CT in Pancreas Cancer vol.10, pp.5, 2016, https://doi.org/10.7742/jksr.2016.10.5.299
  2. The Effectiveness of CT and MRI Contrast Agent for SUV in 18F-FDG PET/CT Scanning vol.10, pp.4, 2016, https://doi.org/10.7742/jksr.2016.10.4.255