DOI QR코드

DOI QR Code

Spray Characteristics of Nonimpinging-type Injector According to the Injection Pressure Variation and Angular Direction of Orifices

분사압력 및 분사각에 따른 비충돌형 인젝터의 분무특성

  • 정훈 (부경대학교 대학원 에너지시스템공학과) ;
  • 김종현 (부경대학교 대학원 에너지시스템공학과) ;
  • 김정수 (부경대학교 기계공학과)
  • Received : 2012.04.02
  • Accepted : 2012.05.23
  • Published : 2012.06.01

Abstract

A water-flow test was carried out for the nonimpinging-type injector to be equipped on 70 N-class liquid-rocket engine under development. Breakup patterns of injector-spray transit from a smooth jet to wavy one as the injection angle increases, whereas spray-breakup lengths are inversely proportional to the injection pressure. It is confirmed that there exist ruffles on the surface of liquid column, which could be caught through the instantaneous spray images captured by high-speed camera. A phenomenon of spray shedding amplified at the specific pressure level of 0.93 MPa was an unexpected behavior of the injected stream and it is to be investigated further.

70 N급 액체로켓엔진에 장착되는 비충돌형 인젝터의 수류시험을 수행하였다. 추진제 분사각이 커짐에 따라 인젝터 분무의 분열 양상이 평활류(smooth jet)에서 파상류(wavy jet) 형태로 천이하고, 분무의 분열길이는 분사압력에 반비례한다. 고속카메라로 획득한 순간분무이미지(instantaneous spray image) 분석을 통하여 액주 표면에 나타나는 파상(ruffle)이 확인되었으며, 특정 분사압력 구간(0.93 MPa)에서 분무의 주기적 흘림현상이 증폭되는 이상현상이 발견되었다.

Keywords

References

  1. Ryan, H. M., Anderson, W. E., Pal, S., and Santoro, R. J., "Atomization Characteristics of Impinging Liquid Jets," J. of Propulsion and Power, Vol. 11, No. 1, 1995, pp.135-145 https://doi.org/10.2514/3.23851
  2. Li, X. and Shen, J., "Experimental Study of Sprays from Annular Liquid Jet Breakup," J. of Propulsion and Power, Vol. 15, No. 1, 1999, pp.103-110 https://doi.org/10.2514/2.5397
  3. Miller, K., Sisco, J., Nugent, N., and Anderson, W., "Combustion Instability with a Single-element Swirl Injector," J. of Propulsion and Power, Vol. 23, No. 5, 2007, pp.1102-1112 https://doi.org/10.2514/1.26826
  4. Tamaki, N., Shimizu, M., Nishida, K., and Hiroyasu, H., "Effects of Cavitation and Internal Flow on Atomization of a Liquid Jet," Atomization and Sprays, Vol. 8, No. 2, 1998, pp.179-197 https://doi.org/10.1615/AtomizSpr.v8.i2.30
  5. Hiroyasu, H., "Spray Break-up Mechanism from the Hole-type Nozzle and Its Applications," Atomization and Sprays, Vol. 10, No. 3-5, 2000, pp.511-527 https://doi.org/10.1615/AtomizSpr.v10.i3-5.130
  6. Kato, M., Kano, H., Date, K., Oya, T., and Niizuma, K., "Flow Analysis in Nozzle Hole in Consideration of Cavitation," 1997, SAE Paper 970052
  7. Kent, J. C. and Brown, G. M., "Nozzle Exit Flow Characteristics for Square-edged and Rounded Inlet Geometries," Combustion Science and Technology, Vol. 30, No. 1-6, 1983, pp.121-132 https://doi.org/10.1080/00102208308923615
  8. Ganippa, L. C., Bark, G., Andersson, S., and Chomiak, J., "Cavitation: A Contributory Factor in the Transition from Symmetric to Asymmetric Jets in Cross-flow Nozzles," Experiments in Fluids, Vol. 36, No. 4, 2004, pp.627-634 https://doi.org/10.1007/s00348-003-0736-4
  9. Baumgarten, C., Stegemann, J., and Merker, G. P., "A New Model for Cavitation Induced Primary Break-up of Diesel Sprays," Proceeding of 18th ILASS Europe Conference, 2002, pp.15-20
  10. Heidmann, M. F. and Humphrey, J. C., "Fluctuations in a Spray Formed by Two Impinging Jets," NACA TN 2349, 1951
  11. Heidmann, M. F., Priem, R. J., and Humphrey, J. C., "A Study of Sprays Formed by Two Impinging Jets," NACA TN 3835, 1957
  12. Kim, J. S., Park, J., Kim, S., Choi, J., and Jang, K. W., "Test and Performance Evaluation of Small Liquid-monopropellant Rocket Engines," AIAA-2006-4388, 2006
  13. 정 훈, 김정수, "소형 액체로켓엔진 인젝터분무의 연료분사압력 변이에 따른 액적의 공간분포 특성," 한국추진공학회지, 제12권, 제 5호, 2008, pp.1-8
  14. Kim, J. S. and Kim, J. S., "A Characterization of the Spray Evolution by Dual-mode Phase Doppler Anemometry in an Injector of Liquid-propellant Thruster," J. of Mechanical Science and Technology, Vol. 23, No. 6, 2009, pp.1637-1649 https://doi.org/10.1007/s12206-009-0209-7
  15. 김정수, 정 훈, 감호동, 서항석, 서 혁, "우주 비행체 궤도기동/자세제어용 추력기의 개발과 발사체에의 활용현황," 한국추진공학회지, 제14권, 제6호, 2010, pp.103-120
  16. Jung, H., Kim, J. H., and Kim, J. S., "Spray Characteristics under Various Injection Conditions for a Nonimpinging-type Injector Utilized in 70 N-class Hydrazine Thruster," AJCPP2012-141, 2012
  17. Lichtarowicz, A., Duggins, R. K., and Markland, E., "Discharge Coefficients for Incompressible Non-cavitating Flow through Long Orifices," J. of Mechanical Engineering Science, Vol. 7, No. 2, 1965, pp.210-219 https://doi.org/10.1243/JMES_JOUR_1965_007_029_02
  18. Kenny, R. J., Moser, M. D., Hulka, J., and Jones, G., "Cold Flow Testing for Liquid Propellant Rocket Injector Scaling and Throttling," AIAA-2006-4705, 2006
  19. Stiesch, G., Modeling Engine Spray and Combustion Processes, Springer, Berlin, 2003, pp.119-192
  20. Inamura, T., Tsutagawa, T., Cho, S. J., and Masuya, G., "Numerical Simulation on the Behavior of a Liquid Jet into an Air Flow," Heat Transfer-Asian Research, Vol. 30, Issue 6, 2001, pp.473-484 https://doi.org/10.1002/htj.1033
  21. Gunder, D. F. and Friant, D. R., "Stability of Flow in a Rocket Motor," Journal of Applied Mechanics (ASME), Vol. 17, No. 3, 1950, pp.327-333

Cited by

  1. Pulse-mode Response Characteristics of a Small LRE for the Precise 3-axes Control of Flight Attitude in SLV vol.17, pp.1, 2013, https://doi.org/10.6108/KSPE.2013.17.1.001
  2. Steady-state Thrust Characteristics of Hydrazine Thruster for Attitude Control of Space Launch Vehicles vol.16, pp.6, 2012, https://doi.org/10.6108/KSPE.2012.16.6.048
  3. Effects of Characteristic Length Variation for Thrust Chamber on the Hot-fire Performance of Hydrazine Thruster vol.42, pp.2, 2014, https://doi.org/10.5139/JKSAS.2014.42.2.144