DOI QR코드

DOI QR Code

Kinetics and Reaction Mechanism for Aminolysis of Benzyl 4-Pyridyl Carbonate in H2O: Effect of Modification of Nucleofuge from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Mechanism

  • Kang, Ji-Sun (Department of Chemistry and Nano Science, Ewha Womans University) ;
  • Um, Ik-Hwan (Department of Chemistry and Nano Science, Ewha Womans University)
  • Received : 2012.02.19
  • Accepted : 2012.04.08
  • Published : 2012.07.20

Abstract

Pseudo-first-order rate constants $k_{amine}$ have been measured spectrophotometrically for the reactions of benzyl 4-pyridyl carbonate 6 with a series of alicyclic secondary amines in $H_2O$ at $25.0^{\circ}C$. The plots of $k_{amine}$ vs. [amine] curve upward, indicating that the reactions proceed through a stepwise mechanism with two intermediates, a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$. This contrasts to the report that the corresponding reactions of benzyl 2-pyridyl carbonate 5 proceed through a forced concerted pathway. The $k_{amine}$ values for the reactions of 6 have been dissected into the second-order rate constant $Kk_2$ and the thirdorder rate constant $Kk_3$. The Br${\o}$nsted-type plots are linear with ${\beta}_{nuc}=0.94$ and 1.18 for $Kk_2$ and $Kk_3$, respectively. The $Kk_2$ for the reaction of 6 is smaller than the second-order rate constant $k_N$ for the corresponding reaction of 5, although 4-pyridyloxide in 6 is less basic and a better nucleofuge than 2-pyridyloxide in 5.

Keywords

References

  1. Castro, E. A. Pure Appl. Chem. 2009, 81, 685-696. https://doi.org/10.1351/PAC-CON-08-08-11
  2. Jencks, W. P. Chem. Rev. 1985, 85, 511-527. https://doi.org/10.1021/cr00070a001
  3. Jencks, W. P. Chem. Soc. Rev. 1981, 10, 345-375. https://doi.org/10.1039/cs9811000345
  4. Jencks, W. P. Acc. Chem. Res. 1980, 13, 161-169. https://doi.org/10.1021/ar50150a001
  5. Menger, F. M.; Smith, J. H. J. Am. Chem. Soc. 1972, 94, 3824- 3829. https://doi.org/10.1021/ja00766a027
  6. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1997, 179-183.
  7. Maude, A. B.; Williams, A. J. Chem. Soc., Perkin Trans. 2 1995, 691-696.
  8. Menger, F. M.; Brian, J.; Azov, V. A. Angew. Chem. Int. Ed. 2002, 41, 2581-2584. https://doi.org/10.1002/1521-3773(20020715)41:14<2581::AID-ANIE2581>3.0.CO;2-#
  9. Perreux, L.; Loupy, A.; Delmotte, M. Tetrahedron 2003, 59, 2185-2189. https://doi.org/10.1016/S0040-4020(03)00151-0
  10. Fife, T. H.; Chauffe, L. J. Org. Chem. 2000, 65, 3579-3586. https://doi.org/10.1021/jo9906835
  11. Spillane, W. J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1998, 2381-2384.
  12. Llinas, A.; Page, M. I. Org. Biomol. Chem. 2004, 2, 651-654. https://doi.org/10.1039/b313900j
  13. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Phys. Org. Chem. 2011, 24, 466-473. https://doi.org/10.1002/poc.1787
  14. Castro, E. A.; Aliaga, M. E.; Cepeda, M.; Santos, J. G. Int. J. Chem. Kinet. 2011, 43, 353-358. https://doi.org/10.1002/kin.20562
  15. Castro, E. A.; Aliaga, M.; Campodonico, P. R.; Cepeda, M.; Contreras, R.; Santos, J. G. J. Org. Chem. 2009, 74, 9173-9179. https://doi.org/10.1021/jo902005y
  16. Castro, E. A.; Ramos, M.; Santos, J. G. J. Org. Chem. 2009, 74, 6374-6377. https://doi.org/10.1021/jo901137f
  17. Castro, E. A.; Aliaga, M.; Santos, J. G. J. Org. Chem. 2005, 70, 2679-2685. https://doi.org/10.1021/jo047742l
  18. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092. https://doi.org/10.1021/jo051168b
  19. Sung, D. D.; Jang, H. M.; Jung, D. I.; Lee, I. J. Phys. Org. Chem. 2008, 21, 1014-1019. https://doi.org/10.1002/poc.1418
  20. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430. https://doi.org/10.1016/j.cplett.2006.11.002
  21. Sung, D. D.; Koo, I. S.; Yang, K.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284. https://doi.org/10.1016/j.cplett.2006.06.015
  22. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629. https://doi.org/10.1021/jo050606b
  23. Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244. https://doi.org/10.1039/b500251f
  24. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 4095-4098. https://doi.org/10.5012/bkcs.2011.32.11.4095
  25. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 1539-1542. https://doi.org/10.5012/bkcs.2011.32.5.1539
  26. Oh, H. K. Bull. Korean Chem. Soc. 2011, 32, 137-140. https://doi.org/10.5012/bkcs.2011.32.1.137
  27. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 8995-8998. https://doi.org/10.1021/jo0264269
  28. Oh, H. K.; Ku, M. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2002, 67, 3874-3877. https://doi.org/10.1021/jo025637a
  29. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237- 1243. https://doi.org/10.1002/chem.200500647
  30. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803. https://doi.org/10.1021/jo0606958
  31. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942. https://doi.org/10.1021/jo049694a
  32. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663. https://doi.org/10.1021/jo000482x
  33. Um, I. H.; Seok, J. A.; Kim, H. T.; Bae, S. K. J. Org. Chem. 2003, 68, 7742-7746. https://doi.org/10.1021/jo034637n
  34. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197. https://doi.org/10.1021/jo061682x
  35. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524. https://doi.org/10.1021/cr990001d
  36. Castro, E. A.; Ibanez, F.; Santos, J. G.; Ureta, C. J. Org. Chem. 1993, 58, 4908-4912. https://doi.org/10.1021/jo00070a028
  37. Castro, E. A.; Galvez, A.; Leandro, L.; Santos, J. G. J. Org. Chem. 2002, 67, 4309-4315. https://doi.org/10.1021/jo025562a
  38. Castro, E. A.; Cubillos, M.; Santos, J. G. J. Org. Chem. 2001, 66, 6000-6003. https://doi.org/10.1021/jo0100695
  39. Castro, E. A.; Garcia, P.; Leandro, L.; Quesieh, N.; Rebolledo, A.; Santos, J. G. J. Org. Chem. 2000, 65, 9047-9053. https://doi.org/10.1021/jo005587e
  40. Castro, E. A.; Saavedra, C.; Santos, J. G.; Umana, M. I. J. Org. Chem. 1999, 64, 5401-5407. https://doi.org/10.1021/jo990084y
  41. Lee, J. I. Bull. Korean Chem. Soc. 2010, 31, 749-752. https://doi.org/10.5012/bkcs.2010.31.03.749
  42. Lee, J. I. Bull. Korean Chem. Soc. 2007, 28, 863-866. https://doi.org/10.5012/bkcs.2007.28.5.863
  43. Lee, J. I.; Kim, S. Bull. Korean Chem. Soc. 1989, 10, 611-612.
  44. Kim, S.; Lee, J. I. J. Org. Chem. 1984, 49, 1712-1716. https://doi.org/10.1021/jo00184a009
  45. Kim, S.; Lee, J. I.; Ko, Y. K. Tetrahedron Lett. 1984, 25, 4943-4946. https://doi.org/10.1016/S0040-4039(01)91265-1
  46. Kim, S.; Lee, J. I. J. Org. Chem. 1983, 48, 2608-2610. https://doi.org/10.1021/jo00163a040
  47. Mukaiyama, T.; Araki, M.; Takei, H. J. Am. Chem. Soc. 1973, 95, 4763-4765. https://doi.org/10.1021/ja00795a055
  48. Araki, M.; Sakata, S.; Takei, H.; Mukaiyama, T. Bull. Chem. Soc. Jpn. 1974, 47, 1777-1780. https://doi.org/10.1246/bcsj.47.1777
  49. Um, I. H.; Kang, J. S.; Kim, C. W.; Lee, J. I. Bull. Korean Chem. Soc. 2012, 33, 519-523. https://doi.org/10.5012/bkcs.2012.33.2.519
  50. Lee, J. I.; Kang, J. S.; Kim, S. I.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 2929-2933. https://doi.org/10.5012/bkcs.2010.31.10.2929
  51. Lee, J. I.; Kang, J. S.; Im, L. R.; Um, I. H. Bull. Korean Chem. Soc. 2010, 31, 3543-3548. https://doi.org/10.5012/bkcs.2010.31.12.3543
  52. Bae, A. R.; Um, I. H. Bull. Korean Chem. Soc. 2012, 33, 1547- 1550. https://doi.org/10.5012/bkcs.2012.33.5.1547
  53. Kang, J. S.; Lee, J. I.; Um, I. H. Bull. Korean Chem. Soc. 2012, 33, 1551-1555. https://doi.org/10.5012/bkcs.2012.33.5.1551
  54. Jencks, W. P.; Regenstein, J. In Handbook of Biochemistry, Selected Data for Molecular Biology; Sober, H. A., Ed.; The Chemical Rubber Co.: Cleveland, OH, 1968; p 216.
  55. Kim, S.; Lee, J. I. Chem. Lett. 1984, 237-238.
  56. Kim, S.; Lee, J. I.; Yi, K. Y. Bull. Chem. Soc. Jpn. 1985, 58, 3570-3575. https://doi.org/10.1246/bcsj.58.3570

Cited by

  1. Aminolysis of Benzyl 2-Pyridyl Thionocarbonate and t-Butyl 2-Pyridyl Thionocarbonate: Effects of Nonleaving Groups on Reactivity and Reaction Mechanism vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1115
  2. in 20 mol % DMSO (aq). Effects of 5-Thienyl Substituent and Base Strength vol.34, pp.7, 2013, https://doi.org/10.5012/bkcs.2013.34.7.2036
  3. OH in 20 mol % DMSO(aq). Effect of Nucleophile on Acyl-Transfer Reaction vol.36, pp.12, 2015, https://doi.org/10.1002/bkcs.10567
  4. A Kinetic Study on Aminolysis of t-Butyl 4-Pyridyl Carbonate and Related Compounds: Effect of Leaving and Nonleaving Groups on Reaction Mechanism vol.33, pp.9, 2012, https://doi.org/10.5012/bkcs.2012.33.9.2971
  5. Reactions of 2,4‐Dinitrophenyl 5‐substituted‐2‐thiophenecarboxylates with R 2 NH/R 2 NH 2+ in 20 Mol % DMSO(aq). Effects of 5 vol.40, pp.10, 2012, https://doi.org/10.1002/bkcs.11857
  6. Reactions of 4‐NITROPHENYL 5‐substituted Furan‐2‐carboxylates with R 2 NH / R 2 NH 2+ in 20 mol% DMSOhttps://doi.org/10.1002/bkcs.12296