DOI QR코드

DOI QR Code

The Study on Thermal Shock Test Characteristics of Solar Cell for Long-term Reliability Test

장기 신뢰성 평가를 위한 태양전지의 열충격 시험 특성에 관한 연구

  • Kang, Min-Soo (School of Mechanical Engineering, Graduate School, Chung-Ang University) ;
  • Kim, Do-Seok (School of Mechanical Engineering, Graduate School, Chung-Ang University) ;
  • Jeon, Yu-Jae (Department of Automotive, Yeo-Ju Institute Technology) ;
  • Shin, Young-Eui (School of Mechanical Engineering, Graduate School, Chung-Ang University)
  • 강민수 (중앙대학교 기계공학부 대학원) ;
  • 김도석 (중앙대학교 기계공학부 대학원) ;
  • 전유재 (여주대학교 자동차과) ;
  • 신영의 (중앙대학교 기계공학부 대학원)
  • Received : 2012.01.21
  • Accepted : 2012.03.21
  • Published : 2012.03.31

Abstract

This study has been performed Thermal Shock test for analyze the cause of Power drop in PV(Photovoltaic) Module. Thermal Shock test condition was performed with temperature range from $-40^{\circ}C{\sim}85^{\circ}C$. One cycle time is 30min. which are consist of low and high temperature 15min. each other. The test was performed with total 500cycles. EL, I-V were conducted every 100cycle up to 500cycles. Mono Cell resulted in 8% Power drop rates in Bare Cell and 9% in Solar Cell. In the case of Multi Cell resulted in 6% Power drop rates in Bare Cell and 13% in Solar Cell. After Thermal Shock test, Solar Cell's Power drop resulted from surface damages, but in the case of Bare Cell's Power drop had no surface damages. Therefore, Bare Cell's Power drop was confirmed as according to leakage current increase by analysis of Fill Factor after Thermal Shock test. Also, Solar Cell's Power drop rates are higher than that of Bare Cell because of surface damages and consuming electric power increase. From now on, it should be considered that analyzed the reasons of Fill Factor decrease and irregular Power drop in PV module and Cell level using cross section, various conditions and test methods.

본 연구에서는 PV(photovoltaic)모듈에서 경년에 따른 효율 저하의 원인을 분석하기 위해 셀 레벨에서의 열충격 시험을 수행하였다. 열충격 시험의 조건은 $-40^{\circ}C$에서 $85^{\circ}C$로 각각 15분씩 30분을 1사이클로 하였으며, 열충격 시험 500 사이클 동안 100 사이클 간격으로 EL분석 및 I-V분석을 수행하였다. 효율 감소율은 단결정 Bare Cell이 8%, Solar Cell이 9%였으며, 다결정 Bare Cell이 6%, Solar Cell이 13%의 감소율을 보였다. 열충격 시험 후 Solar Cell은 표면 손상으로 인한 효율저하를 확인할 수 있었다. Bare Cell의 경우 표면의 손상이 없었지만, 효율이 저하된 것을 확인할 수 있었다. 이는 Fill Factor 분석에 의해 경년 시 나타나는 누설전류에 의한 소모전력 증가로 효율 저하에 영향을 준 것으로 판단된다. 또한, Bare Cell보다 Solar Cell에서의 효율 감소율이 상대적으로 높게 나타난 결과는 표면 손상 및 소모 전력의 증가로 인해 Solar Cell 효율에 큰 영향을 미치는 것으로 판단된다. 향후 단면 분석법 및 다양한 조건의 시험 기법을 활용하여 PV모듈 뿐 아니라 Cell 레벨에서의 불규칙한 효율 및 Fill Factor의 감소 원인을 검토하고, Solar Cell에서의 효율 저하가 가속되는 원인에 대한 대책 방안 연구가 수행되어야 할 것이다.

Keywords

References

  1. Ze Cheng, Hang zhou, Hongzhi Yang, "Research on MPPT control of PV system based on PSO algorithm" CCDC, 2010 pp. 887-892, 2010.
  2. Hong, Guen-kee, Cho, Kyeong-yeon, Seo, Jae-Keun, Oh, Dong-Joon, Shim, Ji-myung, Lee, Hyun-woo, Kim, Ji- Sun, Shin, Jeong-Eun, Lee, Eun-Joo, Lee, Soo-Hong, Lee Hae-Seok "Improvement of solar cell efficiency using selective emitter" KSES, VOL.31, NO.2, 2011 pp. 56-59, 2011.
  3. "저탄소 녹색 성장을 위한 태양광 발전", (주) 도서출판기다리, pp. 112.
  4. KSC-IEC 60904.
  5. KSC-IEC 61215.
  6. "태양전지", (주) 기술정보, pp. 49-86.
  7. M. G. Willalva, J. R. Gazoli, and E. R. Filho, "Comprehensive approach to modeling and simulation of photovoltaic arrays", IEEE Transactions on Power Electronics, Vol. 24, No. 5, pp. 1198-1208, May 2009. https://doi.org/10.1109/TPEL.2009.2013862
  8. G.R. Walker, "Evaluating MPPT topologies using a Matlab PV model", Journal of Electrical & Electronics Engineering, Vol. 21, No. 1, pp. 49-56, 2001.

Cited by

  1. The Study on the Long-term Reliability Characteristics by Solar Cell Ribbon Thickness vol.22, pp.4, 2013, https://doi.org/10.5855/ENERGY.2013.22.4.333
  2. The Study on the Long-term Reliability Characteristics of Ribbon Joint: Solar Cell Ribbon Thickness and Solder Compositions vol.23, pp.4, 2014, https://doi.org/10.5855/ENERGY.2014.23.4.088
  3. Performance of Crystalline Si Solar Cells with Temperature Controlled by a Thermoelectric Module vol.27, pp.7, 2015, https://doi.org/10.6110/KJACR.2015.27.7.375
  4. A Study on The Characteristics of Solar Cell by Thermal Shock test vol.21, pp.3, 2012, https://doi.org/10.5855/ENERGY.2012.21.3.249
  5. Study on the Long-term Reliability of Solar Cell by High Temperature & Humidity Test vol.21, pp.3, 2012, https://doi.org/10.5855/ENERGY.2012.21.3.243
  6. Electric Degradation of Failure Mode of Solar Cell by Thermal Shock Test vol.22, pp.4, 2013, https://doi.org/10.5855/ENERGY.2013.22.4.327
  7. Performance Analysis of the TiO2 Dye-Sensitized Solar Cell according to Seasonal Changes vol.23, pp.3, 2014, https://doi.org/10.12791/KSBEC.2014.23.3.221
  8. Study of characteristics of solar cells through thermal shock and high-temperature and high-humidity testing vol.15, pp.2, 2014, https://doi.org/10.1007/s12541-014-0345-6