DOI QR코드

DOI QR Code

Bridge effect of carbon nanotubes on the electrical properties of expanded graphite/poly(ethylene terephthalate) nanocomposites

  • Received : 2011.11.02
  • Accepted : 2011.12.18
  • Published : 2012.01.31

Abstract

In this work, expanded graphite (EG)-reinforced poly(ethylene terephthalate) (PET) nanocomposites were prepared by the melt mixing method and the content of the EG was fixed as 2 wt%. The effect of multi-walled carbon nanotubes (MWCNTs) as a co-carbon filler on the electrical and mechanical properties of the EG/PET was investigated. The results showed that the electrical and mechanical properties of the EG/PET were significantly increased with the addition of MWCNTs, showing an improvement over those of PET prepared with EG alone. This was most likely caused by the interconnections in the MWCNTs between the EG layers in the PET matrix. It was found that the addition of the MWCNTs into EG/PET led to dense conductive networks for easy electron transfers, indicating a bridge effect of the MWCNTs.

Keywords

References

  1. Afanasov IM, Morozov VA, Kepman AV, Ionov SG, Seleznev AN, Tendeloo GV, Avdeev VV. Preparation, electrical and thermal properties of new exfoliated graphite-based composites. Carbon, 47, 263 (2009). http://dx.doi.org/10.1016/j.carbon.2008.10.004.
  2. Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ. Preparation and properties of electrically conductive PPS/expanded graphite nanocomposites. Compos Sci Technol, 67, 2528 (2007). http://dx.doi.org/10.1016/j.compscitech.2006.12.009.
  3. Kim S, Park SJ. Preparation and electrocatalytic activities of platinum nanoclusters deposited on modified multi-walled carbon nanotubes supports. Anal Chim Acta, 619, 43 (2008). http://dx.doi.org/10.1016/j.aca.2008.02.064.
  4. Chung DDL. Electrical applications of carbon materials. J Mater Sci, 39, 2645 (2004). http://dx.doi.org/10.1023/B:JMSC.0000021439.18202.ea.
  5. Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K. Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer, 47, 2036 (2006). http://dx.doi.org/10.1016/j.polymer.2006.01.029.
  6. Liu W, Do I, Fukushima H, Drzal LT. Influence of processing on morphology, electrical conductivity and flexural properties of exfoliated graphite nanoplatelets-polyamide nanocomposites. Carbon Lett, 11, 279 (2011). https://doi.org/10.5714/CL.2010.11.4.279
  7. Afanasov IM, Shornikova ON, Avdeev VV, Lebedev OI, Tendeloo GV, Matveev AT. Expanded graphite as a support for Ni/carbon composites. Carbon, 47, 513 (2009). http://dx.doi.org/10.1016/j.carbon.2008.10.034.
  8. Forrest SR. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 428, 911 (2004). http://dx.doi.org/10.1038/nature02498.
  9. Park SJ, Jeong HJ, Nah C. A study of oxyfluorination of multiwalled carbon nanotubes on mechanical interfacial properties of epoxy matrix nanocomposites. Mater Sci Eng A, 385, 13 (2004). http://dx.doi.org/10.1016/j.msea.2004.03.041.
  10. Chen P, Kim HS, Jin HJ. Preparation, properties and application of poly amide/carbon nanotube nanocomposites. Macromol Res, 17, 207 (2009). https://doi.org/10.1007/BF03218681
  11. Kalaitzidou K, Fukushima H, Drzal LT. A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol, 67, 2045 (2007). http://dx.doi.org/10.1016/j.compscitech.2006.11.014.
  12. Park SJ. Long-range force contributions to surface dynamics. In: Hsu JP, ed. Interfacial Forces and Fields: Theory and Applications, Marcel Dekker, New York, 387 (1999).
  13. Yan J, Fan Z, Wei T, Qie Z, Wang S, Zhang M. Preparation and electrochemical characteristics of manganese dioxide/graphite nanoplatelet composites. Mater Sci Eng B, 151, 174 (2008). http://dx.doi.org/10.1016/j.mseb.2008.05.018.
  14. Duquesne S, Le Bras M, Bourbigot S, Delobel R, Camino G, Eling B, Lindsay C, Roels T. Thermal degradation of polyurethane and polyurethane/expandable graphite coatings. Polym Degrad Stab, 74, 493 (2001). http://dx.doi.org/10.1016/s0141-3910(01)00177-x.
  15. Kim KS, Rhee KY, Lee KH, Byun JH, Park SJ. Rheological behaviors and mechanical properties of graphite nanoplate/carbon nanotube-filled epoxy nanocomposites. J Ind Eng Chem, 16, 572 (2010). http://dx.doi.org/10.1016/j.jiec.2010.03.017.
  16. Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH. Formation of percolating networks in multi-wall carbon-nanotube-epoxy composites. Compos Sci Technol, 64, 2309 (2004). http://dx.doi.org/10.1016/j.compscitech.2004.01.025.
  17. Du XS, Xiao M, Meng YZ, Hay AS. Synthesis and properties of poly(4,4′-oxybis(benzene)disulfide)/ graphite nanocomposites via in situ ring-opening polymerization of macrocyclic oligomers. Polymer, 45, 6713 (2004). http://dx.doi.org/10.1016/j.polymer.2004.07.026.
  18. Karevan M, Pucha RV, Bhuiyan MA, Kalaitzidou K. Effect of interphase modulus and nanofiller agglomeration on the tensile modulus of graphite nanoplatelets and carbon nanotube reinforced polypropylene nanocomposites. Carbon Lett, 11, 325 (2011). https://doi.org/10.5714/CL.2010.11.4.325
  19. Banks CE, Davies TJ, Wildgoose GG, Compton RG. Electrocatalysis at graphite and carbon nanotube modified electrodes: edgeplane sites and tube ends are the reactive sites. Chem Commun, 829 (2005). http://dx.doi.org/10.1039/b413177k.
  20. Wang J, Chen G, Chatrathi MP, Musameh M. Capillary electrophoresis microchip with a carbon nanotube-modified electrochemical detector. Anal Chem, 76, 298 (2004). http://dx.doi.org/10.1021/ac035130f.
  21. Xiao M, Lu Y, Wang SJ, Zhao YF, Meng YZ. Poly(arylene disulfide)/ graphite nanosheets composites as bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources, 160, 165 (2006). http://dx.doi.org/10.1016/j.jpowsour.2006.01.085.

Cited by

  1. Carbon nanotubes-properties and applications: a review vol.14, pp.3, 2013, https://doi.org/10.5714/CL.2013.14.3.131
  2. -acrylonitrile): Characterization and Its Epoxy Toughening Effect vol.32, pp.4, 2013, https://doi.org/10.1002/adv.21366
  3. A Study on Thermal Conductivity and Fracture Toughness of Alumina Nanofibers and Powders-filled Epoxy Matrix Composites vol.37, pp.1, 2013, https://doi.org/10.7317/pk.2013.37.1.47
  4. Investigation of the effects of graphite flake alignment on thermal emissivity by applying a magnetic field during coating of an aluminum sheet vol.40, pp.7, 2014, https://doi.org/10.1007/s11164-014-1652-3
  5. Characterization and influence of shear flow on the surface resistivity and mixing condition on the dispersion quality of multi-walled carbon nanotube/polycarbonate nanocomposites vol.16, pp.2, 2015, https://doi.org/10.5714/CL.2015.16.2.086
  6. Flexural properties, interlaminar shear strength and morphology of phenolic matrix composites reinforced with xGnP-coated carbon fibers vol.17, pp.1, 2016, https://doi.org/10.5714/CL.2016.17.1.033
  7. Largely enhanced electrical properties of polymer composites via the combined effect of volume exclusion and synergy vol.6, pp.57, 2016, https://doi.org/10.1039/C6RA10129A
  8. Interaction mechanism between serine functional groups and single-walled carbon nanotubes vol.29, pp.2, 2015, https://doi.org/10.1002/poc.3488