DOI QR코드

DOI QR Code

An Analysis of MODIS Aerosol Optical Properties and Ground-based Mass Concentrations in Central Korea in 2009

2009년 한국 중부 지역에서 MODIS 에어로졸 광학 성질과 질량 농도의 분석

  • Kim, Hak-Sung (Department of Earth Science Education, Korea National University of Education) ;
  • Kim, Ji-Min (Department of Earth Science Education, Korea National University of Education) ;
  • Sohn, Jung-Joo (Department of Earth Science Education, Korea National University of Education)
  • 김학성 (한국교원대학교 지구과학교육과) ;
  • 김지민 (한국교원대학교 지구과학교육과) ;
  • 손정주 (한국교원대학교 지구과학교육과)
  • Received : 2012.04.06
  • Accepted : 2012.06.15
  • Published : 2012.06.30

Abstract

Satellite-retrieved data on Aerosol Optical Depth (AOD) and ${\AA}$ngstr$\ddot{o}$m exponent (AE) using a Moderate Resolution Imaging Spectrometer (MODIS) were used to analyze large-scale distributions of atmospheric aerosols in East Asia. AOD was relatively high in March ($0.44{\pm}0.25$) and low in September ($0.24{\pm}0.21$) in the East Asian region in 2009. Sandstorms originating from the deserts and dry areas in Northern China and Mongolia were transported on a massive scale during the springtime, thus contributing to the high AOD in East Asia. Although $PM_{10}$ with diameters ${\leq}10{\mu}m$ was the highest in February at Anmyon, Cheongwon and Ulleung, which is located leeward about half-way through the Korean Peninsula, AOD rose to a high in May. The growth of hygroscopic aerosols moving with increases in relative humidity prior to the Asian monsoon season contributed to a high AOD level in May. AE typically reaches its highest value ($1.30{\pm}0.37$) in August due to anthropogenic aerosols originating from industrial areas in Eastern China, while AOD stays low in summer due to the removal process caused by rainfall. The linear correlation coefficients of the MODIS AOD and ground-based mass concentrations of $PM_{10}$ at Anmyon, Cheongwon and Ulleung were 0.4-0.6. Four cases (six days) of mineral dustfall from sandstorms and six cases (twelve days) of anthropogenically polluted particles were observed in the central area of the Korean Peninsula in 2009. $PM_{10}$ mass concentrations increased at both Anmyon and Cheongwon in the cases of mineral dustfall and anthropogenically polluted particles. Cases of dustfall from sandstorms and anthropogenic polluted particles, with increasing $PM_{10}$ mass concentrations, exhibited higher AOD values in the Yellow Sea region.

동아시아에서 대기 에어로졸의 광역적 분포를 분석하기 위해 MODIS (Moderate Resolution Imaging Spectrometer) 센서에서 산출된 AOD (Aerosol Optical Depth)와 AE (${\AA}$ngstr$\ddot{o}$m Exponent)를 이용하였다. 2009년 동아시아 지역에서 AOD는 3월($0.44{\pm}0.25$)에 높았고, 9월($0.24{\pm}0.21$)에 낮았다. 봄에는 중국 북부와 몽골의 사막, 건조지역에서 발생한 모래폭풍이 광역적으로 이동하여 동아시아의 AOD에 기여하고 있다. 그러나 동아시아의 풍하측에 위치한 한반도 중부의 안면도, 청원, 울릉도에서 $PM_{10}$ ($d{\leq}10{\mu}m$) 질량 농도는 2월에 최고를 보인 반면, AOD는 5월에 가장 높았다. 장마 전 상대습도의 증가에 따른 흡습성 에어로졸의 성장이 5월의 높은 AOD에 기여하고 있다. 여름(8월)에는 북태평양으로부터 해양성 기류와 잦은 강수에 의한 습윤 침전으로 AOD는 낮지만 중국 동부의 산업지역에서 광역적으로 발생한 미세 에어로졸로 인해 AE ($1.30{\pm}0.37$)가 가장 높은 값을 보였다. 안면도, 청원, 울릉도에서 MODIS AOD와 지상 $PM_{10}$ 질량 농도의 상관계수는 0.4-0.6이었다. 2009년 한반도 중부에서 관측한 황사 사례는 4회(6일)였고, 인위적 대기오염 이동 사례는 6회(12일)였다. 황사 사례와 인위적 대기오염의 이동 사례에서 안면도와 청원의 $PM_{10}$ 농도가 모두 증가하였다. 황사와 인위적 대기오염 이동으로 $PM_{10}$이 증가하는 영역에서 AOD가 높게 나타나고 있다.

Keywords

References

  1. 김학성, 윤마병, 손정주, 2010, 2008년 동아시아 대륙으로부터 기원이 다른 먼지와 인위적 오염 입자의 광역적 이동 사례에 대한 분석. 한국지구과학회지, 31, 600-607. https://doi.org/10.5467/JKESS.2010.31.6.600
  2. 김학성, 정용승, 2007, 동아시아 지역에서 광역적 대기오염의 이동: 위성과 지상관측. 한국지구과학회지, 28, 123-135.
  3. 김학성, 정용승, 2009, 2005년 동아시아 지역에서 발생한 모래폭풍과 먼지침전(황사)의 관측. 한국지구과학회지, 30, 196-209. https://doi.org/10.5467/JKESS.2009.30.2.196
  4. 이동하, 이권호, 김정은, 김영준, 2006, 동북아시아 지역에서 TERRA/MODIS 위성자료를 이용한 2000-2005년 동안의 대기 에어러솔 광학두께 변화 특성. 한국기상학회대기지, 16, 85-96.
  5. Acker, J.G. and Leptoukh, G., 2007, Online analysis enhances use of NASA earth science data. Eos, Transactions of American Geophysical Union, 88, 14- 17. https://doi.org/10.1029/2007EO020003
  6. Al-Saadi, J., Szykman, J., Pierce, R.B., Kittaka, C., Neil, D., Chu, D.A., Remer, L., Gumley, L., Prins, E., Weinstock, L., MacDonald, C., Wayland, R., Dimmick, F., and Fishman, J., 2005, Improving national air quality forecasts with satellite aerosol observations. Bulletin of the American Meteorological Society, 86, 1249-1261. https://doi.org/10.1175/BAMS-86-9-1249
  7. Chan, C.K. and Yao, X., 2008, Air pollution in mega cities in China. Atmospheric Environment, 42, 1-42. https://doi.org/10.1016/j.atmosenv.2007.09.003
  8. Chu, D.A., Kaufman, Y.J., Ichoku, C., Remer, L.A., Tanre, D., and Holben, B.N., 2002, Validation of MODIS aerosol optical depth retrieval over land. Geophysical Research Letters, 29, 8007, doi:10.1029/2001GL013205.
  9. Chu, D.A., Kaufman, Y.J., Zibordi, G., Cherm, J.D., Mao, J., Li, C., and Holben, N., 2003, Global monitoring of air pollution over the land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS). Journal of Geophysical Research, 108, 4661, doi:10.1029/2002JD003179.
  10. Chung, Y.S. and Le, H.V., 1984, Detection of forest-fire smoke plumes by satellite image. Atmospheric Environment, 18, 2143-2151. https://doi.org/10.1016/0004-6981(84)90201-4
  11. Chung, Y.S., Kim, H.S., Jugder, D., Natsagdorj, L., and Chen, S.J., 2003, On sand and duststorms and associated significant dustfall observed in Chongju- Cheongwon, Korea during 1997-2000. Water, Air and Soil Pollution: Focus, 3, 5-19.
  12. Chung, Y.S. and Kim, H.S., 2008, Observations of massive-air pollution transport and associated air quality in the Yellow Sea region. International Journal Air Quality, Atmosphere and Health, 1, 69-70. https://doi.org/10.1007/s11869-008-0014-y
  13. Engel-Cox, J.A., Hoff, R.M., and Haymet, D.J., 2004, Recommendations on the use of satellite remote sensing data for urban air quality. Journal of Air Waste Management Association, 54, 1306-1371.
  14. Kim, S.W., Yoon, S.C., Jefferson, A., Ogren, J.A., Dutton, E.G., Won, J.G., Ghim, Y.S., Lee, B.I., and Han, J.S., 2005a, Aerosol optical, chemical and physical properties at Gosan, Korea during Asian dust and pollution episodes in 2001. Atmospheric Environment, 39, 39-50. https://doi.org/10.1016/j.atmosenv.2004.09.056
  15. Kim, S.W., Yoon, S.C., Kim, J., and Kim, S.Y., 2005, Seasonal variation of column-integrated aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR and Sun/sky radiometer measurements. Proceedings of the Autumn Meeting of Korea Meteorological Society, 2005, 366-367.
  16. Kim, Y.K., Song, S.K., Lee, H.W., Kim, C.H., and Oh, I.B., 2006, Characteristics of Asian dust transport based on synoptic meteorological analysis over Korea. Journal of Air and Waste Management Association, 56, 306- 316. https://doi.org/10.1080/10473289.2006.10464724
  17. Kurosaki, Y. and Mikami, M., 2003, Recent frequent dust events and their relation to surface wind in East Asia. Geophysical Research Letters, 30, 1736-1739. https://doi.org/10.1029/2003GL017261
  18. Lee, D.H., Lee, K.H., and Kim, Y.J., 2006, Application of MODIS aerosol data for aerosol type classification. Korean Journal of Remote Sensing, 22, 495-505. https://doi.org/10.7780/kjrs.2006.22.6.495
  19. Lee, J.H., Kim, J.H., Lee, H.C., and Takemura, T., 2007, Classification of aerosol type from MODIS and OMI over East Asia. Journal of the Korean Meteorological Society, 43, 343-357.
  20. Li, J., Zhuang, G., Huang, K., Lin, Y., Xu, C., and Yu, S., 2007, Characteristics and sources of air-born particulate in Urumqi, China, the upstream area of Asia dust. Atmospheric Environment, 42, 776-787.
  21. Liu, Y., Park, R.J., Jacob, D.J., Li, Q., Kilaru, V., and Samat, J.A., 2004, Mapping annual mean ground-level $PM_{2.5}$ concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United Sates. Journal of Geophysical Research, 109, D22206, doi:10.1029/2004JD005025.
  22. Menon, S., Hansen, J., Nazarenko, L., and Luo, Y., 2002, Climate effects of black carbon aerosols in China and India. Science, 27, 2250-2253.
  23. Remer, L.A., Kaufman, Y.J., Tanre, D., Mattoo, S., Chu, D.A., Martins, J.V., Li, R.R., Ichoku, C., Levy, R.C., Kleidman, R.G., Eck, T.F., Vermote, E., and Holben, B.N., 2005, The MODIS aerosol algorithm, products, and validation. Journal Atmospheric Science, 62, 947- 973. https://doi.org/10.1175/JAS3385.1
  24. Smirnov, A., Yershov, O., and Villevalde, Y., 1995, Measurement of optical depth in the Atlantic and Mediterranean Sea. Proc. SPIE Int. Soc. Opt. Eng., 2582, 203-325.
  25. Song, C.K., Ho, C.H., Park, R.J., Choi, Y.S., Kim, J., Gong, D.Y., and Lee, Y.B., 2009, Spatial and seasonal variations of surface $PM_{10}$ concentration and MODIS aerosol optical depth over China. Asia-Pacific Journal of Atmospheric Sciences, 45, 33-43.
  26. Takemura, T., Nakajima, T., Nozawa, T., and Aoki, K., 2001, Simulation of future aerosol distribution, radiative forcing, and long-range transport in East Asia. Journal of the Meteorological Society of Japan, 79, 1139-1155. https://doi.org/10.2151/jmsj.79.1139
  27. Wang, M.X., Zhang, R.J., and Pu, Y.F., 2001, Recent researches on aerosol in China. Advanced Atmospheric Science, 18, 576-586. https://doi.org/10.1007/s00376-001-0046-9
  28. Wang, J., and Christopher, S.A., 2003, Intercomparison between satellite-derived aerosol optical thickness and $PM_{2.5}$ mass: Implications for air quality studies. Geophysical Research Letters, 30, 2095, doi:10.1029/ 2003GL018174.
  29. Ye, B., Ji, X., Yang, H., Yao, X.H., Chan, C.K., Cadle, S.H., Chan, T., and Mulawa, P.A., 2003, Concentration and chemical composition of $PM_{2.5}$ in Shanghai for 1- year period. Atmospheric Environment, 37, 499-510. https://doi.org/10.1016/S1352-2310(02)00918-4