DOI QR코드

DOI QR Code

Pristimerin Inhibits Breast Cancer Cell Migration by Up-regulating Regulator of G Protein Signaling 4 Expression

  • Mu, Xian-Min (Jiangsu Center of Drug Screening, China Pharmaceutical University) ;
  • Shi, Wei (Department of New Drug Screening, Jiangsu Chia-tai Tianqing Pharmaceutical Co., Ltd,) ;
  • Sun, Li-Xin (Jiangsu Center of Drug Screening, China Pharmaceutical University) ;
  • Li, Han (Jiangsu Center of Drug Screening, China Pharmaceutical University) ;
  • Wang, Yu-Rong (Jiangsu Center of Drug Screening, China Pharmaceutical University) ;
  • Jiang, Zhen-Zhou (Jiangsu Center of Drug Screening, China Pharmaceutical University) ;
  • Zhang, Lu-Yong (Jiangsu Center of Drug Screening, China Pharmaceutical University)
  • Published : 2012.04.30

Abstract

Background/Aim: Pristimerin isolated from Celastrus and Maytenus spp can inhibit proteasome activity. However, whether pristimerin can modulate cancer metastasis is unknown. Methods: The impacts of pristimerin on the purified and intracellular chymotrypsin proteasomal activity, the levels of regulator of G protein signaling 4 (RGS 4) expression and breast cancer cell lamellipodia formation, and the migration and invasion were determined by enzymatic, Western blot, immunofluorescent, and transwell assays, respectively. Results: We found that pristimerin inhibited human chymotrypsin proteasomal activity in MDA-MB-231 cells in a dose-dependent manner. Pristimerin also inhibited breast cancer cell lamellipodia formation, migration, and invasion in vitro by up-regulating RGS4 expression. Thus, knockdown of RGS4 attenuated pristimerin-mediated inhibition of breast cancer cell migration and invasion. Furthermore, pristimerin inhibited growth and invasion of implanted breast tumors in mice. Conclusion: Pristmerin inhibits proteasomal activity and increases the levels of RGS4, inhibiting the migration and invasion of breast cancer cells.

Keywords

References

  1. Adams J (2003). The proteasome: structure, function, and role in the cell. Cancer Treat Rev, 29 Suppl 1, 3-9.
  2. Albig AR SW (2005). Identification and characterization of regulator of G protein signaling 4 (RGS4) as a novel inhibitor of tubulogenesis. Mol Biol Cell, 16, 609-25.
  3. Bodenstein J, Sunahara RK, Neubig RR (2007). N-terminal residues control proteasomal degradation of RGS2, RGS4, and RGS5 in human embryonic kidney 293 cells. Mol Pharmacol, 71, 1040-50. https://doi.org/10.1124/mol.106.029397
  4. Boire A, Covic L, Agarwal A, et al (2005). PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell, 120, 303-13. https://doi.org/10.1016/j.cell.2004.12.018
  5. Byun JY, Kim MJ, Eum DY, et al (2009). Reactive oxygen species-dependent activation of Bax and poly(ADP-ribose) polymerase-1 is required for mitochondrial cell death induced by triterpenoid pristimerin in human cervical cancer cells. Mol Pharmacol, 76, 734-44. https://doi.org/10.1124/mol.109.056259
  6. Chambers AF, Groom AC, MacDonald IC (2002). Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2, 563-72. https://doi.org/10.1038/nrc865
  7. Chen L, Madura K (2005). Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res, 65, 5599-606. https://doi.org/10.1158/0008-5472.CAN-05-0201
  8. Costa PM, Ferreira PM, Bolzani Vda S, et al (2008). Antiproliferative activity of pristimerin isolated from Maytenus ilicifolia (Celastraceae) in human HL-60 cells. Toxicol In Vitro, 22, 854-63. https://doi.org/10.1016/j.tiv.2008.01.003
  9. Dahlmann B (2007). Role of proteasomes in disease. BMC Biochem, 8 Suppl 1, S3. https://doi.org/10.1186/1471-2091-8-S1-S3
  10. Dorsam RT, Gutkind JS (2007). G-protein-coupled receptors and cancer. Nat Rev Cancer, 7, 79-94. https://doi.org/10.1038/nrc2069
  11. Glickman MH, Ciechanover A (2002). The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev, 82, 373-428.
  12. Hobson JP, Rosenfeldt HM, Barak LS, et al (2001). Role of the sphingosine-1-phosphate receptor EDG-1 in PDGF-induced cell motility. Science, 291, 1800-3. https://doi.org/10.1126/science.1057559
  13. Huang C, Hepler JR, Gilman AG, et al. (1997). Attenuation of Gi- and Gq-mediated signaling by expression of RGS4 or GAIP in mammalian cells. Proc Natl Acad Sci U S A, 94, 6159-63. https://doi.org/10.1073/pnas.94.12.6159
  14. Jemal A, Bray F, Center MM, et al (2011). Global cancer statistics. CA Cancer J Clin, 61, 69-90. https://doi.org/10.3322/caac.20107
  15. Lappano R, Maggiolini M (2011). G protein-coupled receptors: novel targets for drug discovery in cancer. Nat Rev Drug Discov, 10, 47-60. https://doi.org/10.1038/nrd3320
  16. Lee MJ, Tasaki T, Moroi K, et al (2005). RGS4 and RGS5 are in vivo substrates of the N-end rule pathway. Proc Natl Acad Sci U S A, 102, 15030-5. https://doi.org/10.1073/pnas.0507533102
  17. Neves SR, Ram PT, Iyengar R (2002). G protein pathways. Science, 296, 1636-9. https://doi.org/10.1126/science.1071550
  18. Ross EM, Wilkie TM (2000). GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem, 69, 795-827. https://doi.org/10.1146/annurev.biochem.69.1.795
  19. Schlunck G, Damke H, Kiosses WB, et al (2004). Modulation of Rac localization and function by dynamin. Mol Biol Cell, 15, 256-67.
  20. Schwartz AL, Ciechanover A (2009). Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol, 49, 73-96. https://doi.org/10.1146/annurev.pharmtox.051208.165340
  21. Tiedemann RE, Schmidt J, Keats JJ, et al (2009). Identification of a potent natural triterpenoid inhibitor of proteosome chymotrypsin-like activity and NF-kappaB with antimyeloma activity in vitro and in vivo. Blood, 113, 4027-37. https://doi.org/10.1182/blood-2008-09-179796
  22. Valentiner U, Haane C, Nehmann N, et al (2009). Effects of bortezomib on human neuroblastoma cells in vitro and in a metastatic xenograft model. Anticancer Res, 29, 1219-25.
  23. Van Haastert PJ, Devreotes PN (2004). Chemotaxis: signalling the way forward. Nat Rev Mol Cell Biol, 5, 626-34. https://doi.org/10.1038/nrm1435
  24. Varshavsky IVDaA (2000). RGS4 is arginylated and degraded by the N-end rule pathway in vitro. J Biol Chem, 275, 22931-41. https://doi.org/10.1074/jbc.M001605200
  25. Wu CC, Chan ML, Chen WY, et al (2005). Pristimerin induces caspase-dependent apoptosis in MDA-MB-231 cells via direct effects on mitochondria. Mol Cancer Ther, 4, 1277-85. https://doi.org/10.1158/1535-7163.MCT-05-0027
  26. Xie GX PP (2007 ). How regulators of G protein signaling achieve selective regulation. J Mol Biol, 366, 349-65. https://doi.org/10.1016/j.jmb.2006.11.045
  27. Xie Y, Wolff DW, Wei T, et al (2009). Breast cancer migration and invasion depend on proteasome degradation of regulator of G-protein signaling 4. Cancer Res, 69, 5743-51. https://doi.org/10.1158/0008-5472.CAN-08-3564
  28. Yamada H, Abe T, Li SA, et al (2009). Dynasore, a dynamin inhibitor, suppresses lamellipodia formation and cancer cell invasion by destabilizing actin filaments. Biochem Biophys Res Commun, 390, 1142-8. https://doi.org/10.1016/j.bbrc.2009.10.105
  29. Yang H, Landis-Piwowar KR, Lu D, et al (2008). Pristimerin induces apoptosis by targeting the proteasome in prostate cancer cells. J Cell Biochem, 103, 234-44. https://doi.org/10.1002/jcb.21399
  30. Yau C, Esserman L, Moore DH, et al (2010). A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res, 12, R85. https://doi.org/10.1186/bcr2753

Cited by

  1. Pristimerin, a quinonemethide triterpenoid, induces apoptosis in pancreatic cancer cells through the inhibition of pro-survival Akt/NF-κB/mTOR signaling proteins and anti-apoptotic Bcl-2 vol.44, pp.5, 2014, https://doi.org/10.3892/ijo.2014.2325
  2. Ubiquitin-proteasomal degradation of antiapoptotic survivin facilitates induction of apoptosis in prostate cancer cells by pristimerin vol.45, pp.4, 2014, https://doi.org/10.3892/ijo.2014.2561
  3. 2-deoxy-D-Glucose Synergizes with Doxorubicin or L-Buthionine Sulfoximine to Reduce Adhesion and Migration of Breast Cancer Cells vol.16, pp.8, 2015, https://doi.org/10.7314/APJCP.2015.16.8.3213
  4. Overexpression of the regulator of G-protein signaling 5 reduces the survival rate and enhances the radiation response of human lung cancer cells vol.33, pp.6, 2015, https://doi.org/10.3892/or.2015.3917
  5. Anti-cancer effect of pristimerin by inhibition of HIF-1α involves the SPHK-1 pathway in hypoxic prostate cancer cells vol.16, pp.1, 2016, https://doi.org/10.1186/s12885-016-2730-2
  6. Pristimerin overcomes adriamycin resistance in breast cancer cells through suppressing Akt signaling vol.11, pp.5, 2016, https://doi.org/10.3892/ol.2016.4335
  7. Fatty Acids Rich Extract From Clerodendrum volubile Suppresses Cell Migration; Abates Oxidative Stress; and Regulates Cell Cycle Progression in Glioblastoma Multiforme (U87 MG) Cells vol.9, pp.1663-9812, 2018, https://doi.org/10.3389/fphar.2018.00251