DOI QR코드

DOI QR Code

Prediction of Fracture Strength of Woven CFRP Laminates According to Fiber Orientation

평직 CFRP 적층복합재료의 섬유배열각도에 따른 파괴강도 예측

  • Received : 2011.12.21
  • Accepted : 2012.05.24
  • Published : 2012.08.01

Abstract

CFRP composite materials have been widely used in various fields of engineering because of their excellent properties. They show high specific stiffness and specific strength compared with metallic materiasl. Woven CFRP composite materials are fabricated from carbon fibers with two orientation angles ($0^{\circ}/90^{\circ}$), which influences the mechanical properties. Therefore, woven CFRP composite materials show different types of fracture behavior according to the load direction. Therefore, the fracture behavior of these materials needs to be evaluated according to the load direction when designing structures using these materials. In this study, we evaluate the fracture strength of plain-woven CFRP composite materials according to the load direction. We performed tests for six different angles (load direction: $0^{\circ}/90^{\circ}$, $30^{\circ}/-60^{\circ}$, $+45^{\circ}/-45^{\circ}$) and estimated the fracture strength for an arbitrary fiber angle by using the modified Tan's theory and harmonic function.

섬유강화 복합재료는 금속 재료보다 비강성 및 비강도가 높아 경량화가 요구되는 산업에서 수요가 증가하고 있다. 이러한 섬유강화 복합재료는 방향성을 가진 섬유 원사를 일정한 규칙으로 배열하고 에폭시 수지와 같은 레진을 이용하여 경화한 후 사용하게 된다. 섬유강화 복합재료는 구조적인 특성상 섬유배열각도에 따라 서로 다른 재료물성을 나타내기 때문에 섬유강화 복합재료의 강도를 정확히 평가하는 것은 이들을 구성요소로 하는 복합재료 구조물의 설계 또는 파괴에 대응한 설계에서 매우 중요하다. 이에 본 논문에서는 평직 탄소섬유강화 복합재료 적층판을 대상으로 섬유배열각도($0^{\circ}/90^{\circ}$, $30^{\circ}/-60^{\circ}$, $+45^{\circ}/-45^{\circ}$)에 따른 인장시험을 통하여 정적 파괴강도를 평가하였으며, 복합재료를 구성하고 있는 섬유의 구조적인 주기성을 포함하는 Tan과 Cheng의 강도함수와 조화함수를 이용하여 섬유배열각도에 따른 평직 탄소섬유강화 복합재료의 정적 파괴강도를 예측하였다.

Keywords

References

  1. Kim, S. J. and Jang, S. H., 2006, "The Effect of Bias and Shear Angles on Compressive Characteristics of Carbon/Epoxy Plain Weave Fabrics," Trans. of the KSME(A), Vol. 30, No. 7, pp. 857-864. https://doi.org/10.3795/KSME-A.2006.30.7.857
  2. Jeong, W. K. and Lim, W. K., 2005, "Failure Criteria of Fibrous Composites Under Combined Stress," KSME proceeding of annual fall conference.
  3. Tan, S. C. and Cheng, S., 1997, "Failure Criteria for Fibrous Anisotropic Materials," International J. of Materials in Civil Engineering, ASCE, Vol.5, No.2, pp.198-211.
  4. Kim, S. Y., Park, H. S., Kang, M. S., Choi, J. H., Koo, J. M. and Seok, C. S., 2009, "Evaluation of Failure Strength of Woven CFRP Composite Plate Subject to Axial Load by Tan-Cheng Failure Criterion," Trans. of the KSME(A), Vol. 33, No. 4, pp. 360-365. https://doi.org/10.3795/KSME-A.2009.33.4.360
  5. Hankinson, R. L., 1929, "Investigation of Crushing Strength of Spruce at Varying Angles of Grain," Air Service Information Circular, No. 259, US air Service
  6. Lim, W. K., Lee, S. K. and Jeong, W. K., 2005, "Simple Analysis of the Tan''s Failure Criterion on Fibrous Anisotropic Materials," KSME proceeding of annual spring conference, pp. 518-523
  7. ASTM D3039-93, 1993, "Standard Test Method for Tensile Properties of Fiber Resin Composite,"

Cited by

  1. Analytical and Experimental Study for Development of Composite Coil Springs vol.38, pp.1, 2014, https://doi.org/10.3795/KSME-A.2014.38.1.031
  2. Prediction of Spring Rate and Initial Failure Load due to Material Properties of Composite Leaf Spring vol.38, pp.12, 2014, https://doi.org/10.3795/KSME-A.2014.38.12.1345
  3. Properties of Randomly Oriented Chopped E-glass Reinforced Unsaturated Polyester Based Resin Composite -Effect of Length/Content of E-Glass Fiber and Number of Stacking- vol.27, pp.3, 2015, https://doi.org/10.5764/TCF.2015.27.3.165