DOI QR코드

DOI QR Code

Reliability-Based Design Optimization Using Akaike Information Criterion for Discrete Information

이산정보의 아카이케 정보척도를 이용한 신뢰성 기반 최적설계

  • Lim, Woo-Chul (Dept. of Automotive Engineering, College of Engineering, Hanyang Univ.) ;
  • Lee, Tae-Hee (Dept. of Automotive Engineering, College of Engineering, Hanyang Univ.)
  • 임우철 (한양대학교 공과대학 자동차공학과) ;
  • 이태희 (한양대학교 공과대학 자동차공학과)
  • Received : 2012.02.27
  • Accepted : 2012.06.09
  • Published : 2012.08.01

Abstract

Reliability-based design optimization (RBDO) can be used to determine the reliability of a system by means of probabilistic design criteria, i.e., the possibility of failure considering stochastic features of design variables and input parameters. To assure these criteria, various reliability analysis methods have been developed. Most of these methods assume that distribution functions are continuous. However, in real problems, because real data is often discrete in form, it is important to estimate the distributions for discrete information during reliability analysis. In this study, we employ the Akaike information criterion (AIC) method for reliability analysis to determine the best estimated distribution for discrete information and we suggest an RBDO method using AIC. Mathematical and engineering examples are illustrated to verify the proposed method.

신뢰성 기반 최적설계는 설계변수들의 변동을 평균이나 분산 등의 통계적 특성으로 고려하여 설계자가 원하는 신뢰도를 만족하는 해를 구한다. 신뢰도를 구하기 위한 기존의 신뢰성해석 기법들은 변수들이 연속함수로 정의되는 특정 확률분포를 따른다는 가정을 하지만 실제 문제에서 변수들은 한정적인 이산정보의 형태인 경우가 많기 때문에 변수들에 대한 가정을 하지 않고 이산정보로부터 신뢰성해석을 수행하는 것은 매우 중요하다. 본 연구에서는 후보 분포들 중에서 이산정보를 가장 잘 추정하는 분포를 결정하는 기법인 Akaike 정보척도를 이용하여 신뢰성해석 및 신뢰성 기반 최적설계를 수행하는 기법을 제안한다. 수학예제를 통해 정확성을 검증하고 철도차량 용접대차의 신뢰성 기반 최적설계에 적용하여 제안한 기법의 유용성을 확인한다.

Keywords

References

  1. Buslenko, N.P., Golenko, D.I., Shreider, Y.A., Sobol, I.M. and Sragowich, V.G., 1994, The Monte Carlo Method, Pergamon Press.
  2. Cornell, C.A., 1969, "A Probability-based Structural Code," Journal of the American Concrete Institute, Vol.66, No.12, pp.974-985.
  3. Breitung, K., 1984, "Asymptotic Approximations for Multinormal Integrals," Journal of Engineering Mechanics Division, ASCE, Vol. 110, No. 3, pp. 357-366. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:3(357)
  4. Seo, H.S. and Kwak, B.M., 2002, "Efficient Statistical Tolerance Analysis for General Distributions Using Three-Point Information," International Journal of Production Research, Vol. 40, No. 4, pp. 931-944. https://doi.org/10.1080/00207540110095709
  5. Lee, S.H. and Kwak, B.M., 2005, "Reliability-based Design Optimization Using Response Surface Augmented Moment Method," Proceedings of the 6th World Congress on Structural and Multidisciplinary Optimization, Reo de Janeiro, 30 May-3 June, 2005.
  6. Rahman, S. and Xu, H., 2004, "A Univariate Dimension-Reduction Method for Multi-Dimensional Integration in Stochastic Mechanics," Probabilistic Engineering Mechanics, Vol. 19, No. 4, pp. 393-408. https://doi.org/10.1016/j.probengmech.2004.04.003
  7. Jung, J.J., 2007, Multiplicative Decomposition Method for Accurate Moment-Based Reliability Analysis, Ph.D. thesis, Hanyang University.
  8. Akaike, H., 1973, "Information theory and an extension of the maximum likelihood principle," Proceedings of the Second International Symposium on Information Theory, pp. 267-281.
  9. Hurvich, C.M., Simonoff, J.S. and Tsai, C.L., 1998, "Smoothing Parameter Selection in Nonparametric Regression using an Improved Akaike Informaion Criterion," Journal of the Royal Statistical Society Series B-Statistical Methodology, Vol.60, pp. 271-293. https://doi.org/10.1111/1467-9868.00125
  10. Pan, W., 2001, "Akaike's Information Criterion in Generalized Estimating Equations," Biometrics, Vol. 57, pp. 120-125. https://doi.org/10.1111/j.0006-341X.2001.00120.x
  11. Spendelow, J.A., Nichols, J.D., Nisbet, I.C.T., Hays, H., Cormons, G.D., Burger, J., Safina, C., Hines, J.E. and Gochfeld, M., 1995, "Estimating Annual Survival and Movement Rates of Adults within a Metapopulation of Roseate Terns," Ecology, Vol. 76, No. 8, pp. 2415-2428. https://doi.org/10.2307/2265817
  12. Al-Rubaie, K.S., Godefroid L.B. and Lopes J.A.M., 2007, "Statistical Modeling of Fatigue Crack Growth Rate in Inconel Alloy 600," International Journal of Fatigue, Vol. 29, pp. 931-940. https://doi.org/10.1016/j.ijfatigue.2006.07.013
  13. Go, S.J., Lee, M.C. and Park, M.K., 2001, "Fuzzy Sliding Mode Control of a Polishing Robot based on Genetic Algorithm," Journal of Mechanical Science and Technology, Vol. 15, No. 5, pp. 580-591.
  14. Sakamoto, Y., Ishiguro, M. and Kitagawa, G., 1986, Akaike Information Criterion Statistics, KTK Scientific Publishers.

Cited by

  1. Comparative Study of Reliability Analysis Methods for Discrete Bimodal Information vol.37, pp.7, 2013, https://doi.org/10.3795/KSME-A.2013.37.7.883
  2. Reliability-based Design Optimization for Lower Control Arm using Limited Discrete Information vol.22, pp.2, 2014, https://doi.org/10.7467/KSAE.2014.22.2.100
  3. Forecasting Model Design of Fire Occurrences with ARIMA Models vol.19, pp.2, 2015, https://doi.org/10.7842/kigas.2015.19.2.20
  4. The strength analysis and probabilistic design of a bogie frame with incomplete probabilistic information vol.32, pp.3, 2018, https://doi.org/10.1007/s12206-018-0224-7