DOI QR코드

DOI QR Code

Prediction of Plastic Settlement of Roadbed Materials through Cyclic Loading Test

반복하중에 따른 철도 노반재료의 소성침하예측

  • Choi, Chan-Yong (High-Speed Railway Research Division, Korea Railroad Research Institute) ;
  • Shin, Eun-Chul (Department of civil and Environmental Engineering, University of Incheon) ;
  • Kang, Hyoun-Hoi (Department of civil and Environmental Engineering, University of Incheon)
  • 최찬용 (한국철도기술연구원, 고속철도인프라시스템연구단) ;
  • 신은철 (인천대학교 토목환경시스템공학과) ;
  • 강현회 (인천대학교 토목환경시스템공학과)
  • Received : 2012.05.09
  • Accepted : 2012.07.12
  • Published : 2012.09.30

Abstract

If the railways consisting of soil subgrade is applied to repetitive loading, elastic deformation and plastic deformation will occur at the same time. So the repeat traffic loading condition should be considered to predict the long-term deformation on railway roadbed. In this study, laboratory data from the repeated load triaxial tests and cylinder model test were used to predict accumulated settlement on railway foundation and results were analyed based on the nonliear models and stress state considered. It has proposed predict model using power function model on plastic settlement of roadbed materials.

흙노반으로 이루어진 철도 구간의 경우 반복적인 하중재하에 따라 탄성상태로 복귀하는 회복변형과 영구 변형이 동시에 발생한다. 따라서 열차하중이 반복적으로 작용하는 철도하부 지반에서의 변형예측을 위하여 반복하중에 대한 장기변형 예측이 필요하다. 본 논문에서는 최적함수비 범위에서의 최적함수비의 일반토사를 대상으로 진동삼축압축시험과 원형토조시험을 통해 반복하중에 따른 변형 특성을 비교하였으며, 파워함수 모델을 이용하여 각 재료별 축차응력과 반복횟수를 고려한예측모델식을 제안하였다.

Keywords

References

  1. 김동수, 서원석, 권기철 (2005), "반복식 평판재하시험을 이용한 노상토의 현장 변형계수 평가", 한국지반공학회논문집, 제21권, 제6호, pp.67-79.
  2. 박성완, 안동석 (2010), "반복교통하중에 의한 도로지반의 장기변형 예측", 대한토목학회논문집, 제30권, 제50호, pp. 505-512.
  3. 최찬용 (2008), 이동하중을 고려한 철도노반재료의 소성 침하 예측, 박사학위논문, 인천대학교.
  4. Barksdale, R. D. (1972), "Laboratory evaluation of rutting in basecourse materials", Proceedings 3rd International Conference on Structure of Asphalt Pavements, pp.161-174.
  5. Brown, S.F. and Hyde, A. F. L. (1975), Significance of Cyclic Confining Stress in Repeated-Load Triaxial Testing of Granular Material, Transportation Research Record 537, Transportation Research Board, Washington, D.C., pp.49-58.
  6. Lekarp F., Isacsson U. and Dawson A. (2000), "State of the part I.: Resilient response of unbound aggregates", Journal of Transportation Engineering, ASCE, Vol.126, No.1, pp.66-75. https://doi.org/10.1061/(ASCE)0733-947X(2000)126:1(66)
  7. Li, D. (1994), Railway track granular layer thickness design based on subgrade performance under repeated loading, Ph.D. Dissertation, University of Massachusetts at Amherst.
  8. Li, D. and Selig, T. (1996), "Cumulative plastic Deformation for Fine-Grained Subgrade Soils", Journal of Geotechnical Engineering, ASCE, Vol.122, No.12, pp.1006-1013. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:12(1006)
  9. Morgan, J. R. (1966), "The Response of Granular Materials to Repeated Loading", Proceedings, Third Conference, Australian Road Research Board, Sydney, pp.1178-1192.
  10. Pumphrey, Jr., N. D. and Lentz, R. W. (1986), A Deformation Analysis of Florida Highway Subgrade Sand Subjected to Repeated Load Triaxial Tests, Transportation Research Record 1086, TRB, Washington D.C., pp.49-56.
  11. Sweere, G. T. H. (1990), Unbound Granular Bases for Roads, PhD disserttion, University of Delft, Delft, The Netherlands.
  12. Wood, D. M. (1982), "Laboratory Investigations of the Behavior of Soils under Cyclic Loading: A Review." oil Mechanics- Transient and Cycle Loads, John Wiley and Sons Inc., New York, pp.513-582.