DOI QR코드

DOI QR Code

Biomimetic Analysis on the Spider Silk Apparatus for Designing the Nanofiber-spinning Nozzle

나노섬유 방사노즐 설계를 위한 거미 실크 방적장치의 생체모사 분석

  • Moon, Myung-Jin (Department of Biological Sciences, Dankook University) ;
  • Kim, Hoon (Department of Biological Sciences, Dankook University) ;
  • Park, Jong-Gu (Department of Biological Sciences, Dankook University)
  • 문명진 (단국대학교 생명과학과) ;
  • 김훈 (단국대학교 생명과학과) ;
  • 박종구 (단국대학교 생명과학과)
  • Received : 2012.05.18
  • Accepted : 2012.06.25
  • Published : 2012.06.30

Abstract

The biomimetic approach on the cuticular spinning nozzles of the major ampullate silk glands in the golden-web spider Nephila calvata has been attempted using various visualizing techniques of light and electron microscopes to improve the design of spinning nozzle for producing synthetic nanofibers spun from electrospinning apparatus. The major ampullate spigot which has the most effective nozzle system to produce nanofibers for dragline silk with high strength and elasticity is connected via the bullet type spigot on anterior spinneret with flexible terminal segment. The excretory duct which transports the liquid silk feedstock from ampulla to spigot is divided into 3 limbs by loops back on itself to form an S-shape morphology that is bundled in connective tissue. Final diameter of the nanofibers at nozzle was dramatically reduced by gradual narrowing of duct cuticle less than 10 times comparing to its original size of funnel region. Moreover, the funnel has a characteristic cuticular organization with porous microstructure which seems to be related to water removal from feedstock of silk precursors. High magnification electron micrographs also reveal the presence of the spiral grooves on the surface of the cuticular intima near the valve which presumed to reduce friction during rapid flow of liquid silk.

고강성 나노섬유 생산이 가능한 전기방사장치 방사노즐의 설계를 위해 자연을 모방하는 공학적 방법론을 도입하여, 무당거미(Nephila clavata L.Koch) 대병상선의 토사관과 그 생체방적 시스템이 지닌 미세구조적 특성을 고해상도의 전자현미경 관찰을 통해 분석하였다. 자연계에서 가장 강도가 높은 드래그라인을 생성, 분비하는 대병상선의 토사관은 bullet type spigot을 통해 전방적돌기 표면에 개구되어 있었으며, 신축성 구조를 지닌 토사관 말단마디의 노즐을 통해 고체상의 실크가 생성되었다. 분비낭과 토사관 사이를 연결한 분비관은 루프를 형성한 후 방적돌기에 수납되었고, 분비관 내강의 직경은 점진적으로 축소되어 노즐을 통해 방사되는 실크의 직경은 펀넬 부위의 1/10 이하인 것으로 관찰되었다. 한편, 실크 중합과정에서 수분을 제거하기 위한 큐티클의 특수구조가 관찰되었는데, 분비낭의 펀넬 부위에서는 해면상 큐티클 구조가 그리고 분비관의 말단부에서는 비후된 subcuticle 구조와 함께 잘 발달된 상피의 미세융모 층이 확인되었다. 또한 분비관의 내강부 큐티클 표면에서 확인된 나선형 강선구조는 실크 전구물질의 신속한 유동을 촉진하는 장치일 것으로 해석되었다.

Keywords

References

  1. Andersen SO: Amino acidic composition of spider silks. Comp Biochem Physiol 35 : 705-713, 1970. https://doi.org/10.1016/0010-406X(70)90988-6
  2. Bell AL, Peakall DB: Changes in fine structure during silk protein production in the ampullate gland of the spider Araneus sericatus. J Cell Biol 42 : 284-295, 1969. https://doi.org/10.1083/jcb.42.1.284
  3. Deitzel JM, Kosik W, McKnight SH, Tan NCB, DeSimone JM, Crette S: Electrospinning of polymer nanofibers with specific surface chemistry. Polymer 43 : 1025-1029, 2002. https://doi.org/10.1016/S0032-3861(01)00594-8
  4. Eadie L, Ghosh TK: Biomimicry in textiles: past, present and potential. An overview. J R Soc Interface 8 : 761-775, 2011. https://doi.org/10.1098/rsif.2010.0487
  5. Foelix RF: Biology of Spiders (3rd ed). Oxford Univ. Press, New York, pp. 1-419, 2011.
  6. Gosline JM, Denny MW, DeMont ME: Spider silk as rubber. Nature 309 : 551-552, 1984. https://doi.org/10.1038/309551a0
  7. Groome JR, Townley MA, de Tschaschell M, Tillinghast EK: Detection and isolation of proctolin-like immunoreactivity in Arachnids: Possible cardioregulatory role for proctolin in the orb-weaving spiders Argiope and Araneus. J Insect Physiol 37 : 9-19, 1991. https://doi.org/10.1016/0022-1910(91)90013-P
  8. Huang Z, Zhang Y, Kotaki M, Ramakrishna S: A review on polymer nanofibers by electrospining and their applications in nanocomposites. Composites Science and Technology 63 : 2223-2253, 2003. https://doi.org/10.1016/S0266-3538(03)00178-7
  9. Jin HJ, Kaplan DL: Mechanism of silk processing in insects and spiders. Nature 424 : 1057-1061, 2003. https://doi.org/10.1038/nature01809
  10. Kaplan D: Fibrous proteins-silk as a model system. Polymer Degradation and Stability 59 : 25-32, 1998. https://doi.org/10.1016/S0141-3910(97)00000-1
  11. Knight DP, Vollrath F: Liquid crystals and flow elongation in a spider's silk production line. Proc R Soc Lond Ser B Biol Sci 266 : 519-523, 1999. https://doi.org/10.1098/rspb.1999.0667
  12. Knight DP, Vollrath F: Changes in element composition along the spinning duct in a Nephila spider. Naturwissenschaften 88 : 179-182, 2001. https://doi.org/10.1007/s001140100220
  13. Lee GY, Jung IT, Shim SH, Yoon KB: Fabrications and applications of core/sheath, hollow and nanoporous structured nanofibers by electrospinning. Polymer Sci & Technol 19 : 25-34, 2008.
  14. Li D, Xia Y: Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials 16 : 1151-1170, 2004. https://doi.org/10.1002/adma.200400719
  15. Moon MJ: Fine structure of the silk producing apparatus in the garden spider, Argiope bruennichi. Kor J Entomol 28 : 345-354, 1998.
  16. Moon MJ: Organization of the spinnerets and spigots in the orb web spider, Argiope bruennichi (Araneae: Araneidae). Entomol Res 42 : 85-93, 2012. https://doi.org/10.1111/j.1748-5967.2011.00440.x
  17. Moon MJ, Tillinghast EK: Silk production after mechanical pulling stimulation in the ampullate silk glands of the barn spider, Araneus cavaticus. Entomol Res 34 : 123-130, 2004. https://doi.org/10.1111/j.1748-5967.2004.tb00101.x
  18. Omenetto FG, Kaplan DL: New opportunities for an ancient material. Science 329 : 528-531, 2010. https://doi.org/10.1126/science.1188936
  19. Peakall DB: Synthesis of silk, mechanism and location. Am Zool 9 : 71-79, 1969.
  20. Reneker DH, Chun IS: Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7 : 216-223, 1996. https://doi.org/10.1088/0957-4484/7/3/009
  21. Stauffer SL, Coguill SL, Lewis RV: Comparison of physical properties of three silks from Nephila clavipes and Araneus gemmoides. J Arachnol 22 : 5-11, 1994.
  22. Tillinghast EK, Chase SF, Townley MA: Water extraction by the major ampullate duct during silk formation in the spider, Argiope aurantia Lucas. J Insect Physiol 30 : 591-596, 1984. https://doi.org/10.1016/0022-1910(84)90088-X
  23. Tillinghast EK, Townley M: The independent regulation of protein synthesis in the major ampullate glands of Araneus cavaticus Keyserling. J Insect Physiol 32 : 117-123, 1986. https://doi.org/10.1016/0022-1910(86)90130-7
  24. Tillinghast EK, Townley M: Chemistry, physical properties, and synthesis of Araneidae orb webs. In: Nentwig W, ed, Ecophysiology of Spiders, Springer-Verlag, Berlin, pp. 203-210, 1987.
  25. Vincent JFV, Bogatyreva OA, Bogatyrev NR, Bowyer A, Pahl A: Biomimetics - its practice and theory. J R Soc Interface 3 : 471- 482, 2006. https://doi.org/10.1098/rsif.2006.0127
  26. Vollrath F, Knight DP: Liquid crystalline spinning of spider silk. Nature 410 : 541-548, 2001. https://doi.org/10.1038/35069000
  27. Wilson RS: The structure of the dragline control valves in the garden spider. Q J Microsc Sci 103 : 549-555, 1962a.
  28. Wilson RS: The control of dragline spinning in the garden spider. Q J Microsc Sci 103 : 557-571, 1962b.
  29. Work RW: Duality in major ampullate silk and precursive material from orb-web building spiders (Araneae). Trans Am Microsc Soc 103 : 113-121, 1984. https://doi.org/10.2307/3226233
  30. Work RW, Morosoff N: A physico-chemical study of the supercontraction of spider major ampullate silk fibers. Text Res J 52 : 349-356, 1982. https://doi.org/10.1177/004051758205200508
  31. Yarin AL, Zussman E: Upward needleless electrospinning of multiple nanofibers. Polymer 45 : 2977-2980, 2004. https://doi.org/10.1016/j.polymer.2004.02.066
  32. Yoon H, Park YK, Kim GH: Drug delivery system using electrospun nanofiber mats. Polymer (Kor) 33 : 219-223, 2009.
  33. Yoshimoto H, Shin YM, Terai H, Vacanti JP: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24 : 2077-2082, 2003. https://doi.org/10.1016/S0142-9612(02)00635-X