DOI QR코드

DOI QR Code

Decrease in the Particle Size of Paclitaxel by Increased Surface Area Fractional Precipitation

표면적이 증가된 분별침전에 의한 paclitaxel의 입자 크기 감소

  • Lee, Ji-Yeon (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Jin-Hyun (Department of Chemical Engineering, Kongju National University)
  • 이지연 (공주대학교 화학공학부) ;
  • 김진현 (공주대학교 화학공학부)
  • Received : 2012.03.06
  • Accepted : 2012.04.05
  • Published : 2012.06.28

Abstract

In this study, we have for the first time applied increased surface area fractional precipitation in order to decrease the particle size of the anticancer agent paclitaxel from plant cell cultures. When compared with the case where no surface area increasing material was employed, the addition of ion exchange resin as a surface area increasing material resulted in a considerable decrease in the size of the paclitaxel precipitate. When ion exchange resin was used, the paclitaxel particles were four to five times smaller, having less than a 20 ${\mu}m$ radius, than those obtained in the absence of ion exchange resin. This is presumably because the growth of paclitaxel particles was impeded by the addition of ion exchange resin. The size of the paclitaxel precipitate also depended on the material used to increase the surface area, a result considered to be due to differences in the affinity between the particular ion exchange resin used and the paclitaxel particles. The yield of paclitaxel was significantly improved when ion exchange resin was used as a material to increase surface area. Paclitaxel, with a reduced particle size due to the addition of a surface area increasing material during the fractional precipitation process, is believed to be particularly useful for practical applications of the drug.

Keywords

References

  1. Chen, X., T. J. Young, M. Sarkari, R. O. Williams, and K. P. Johnston. 2002. Preparation of cyclosporine A nanoparticles by evaporative precipitation into aqueous solution. Int. J. Pharm. 242: 3-14. https://doi.org/10.1016/S0378-5173(02)00147-3
  2. Cho, E. B., W. K. Cho, K. H. Cha, and J. S. Park. 2010. Enhanced dissolution of megestrol acetate microcrystals prepared by antisolvent precipitation process using hydrophilic additives. Int. J. Pharm. 396: 91-98. https://doi.org/10.1016/j.ijpharm.2010.06.016
  3. Choi, H. K., T. L. Adams, R. W. Stahlhut, S. I. Kim, J. H. Yun, B. K. Song, J. H. Kim, S. S. Hong, and H. S. Lee. 1999. Method for mass production of taxol by semicontinuous culture with Taxus chinensis cell culture. US Patent 5,871,979.
  4. Dong, Y., W. K. Ng, S. Shen, S. Kim, and R. B. H. Tan. 2009. Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation. Int. J. Pharm. 375: 84-88. https://doi.org/10.1016/j.ijpharm.2009.03.013
  5. Han, M. G., K. Y. Jeon, S. Y. Mun, and J. H. Kim. 2010. Development of a micelle-fractional precipitation hybrid process for the pre-purification of paclitaxel from plant cell cultures. Process Biochem. 45: 1368-1374. https://doi.org/10.1016/j.procbio.2010.05.010
  6. Jeon, K. Y and J. H. Kim. 2008. Effect of surfactant on the micelle process for the pre-purification of paclitaxel. Kor. J. Biotechnol. Bioeng. 23: 557-560.
  7. Jeon, K. Y and J. H. Kim. 2009. Improvement of fractional precipitation process for pre-purification of paclitaxel. Process Biochem. 44: 736-741. https://doi.org/10.1016/j.procbio.2009.03.007
  8. Jeon, S. I., S. Y. Mun, J. H. Kim. 2006. Optimal temperature control in fractional precipitation for paclitaxel pre-purification. Process Biochem. 41: 276-280. https://doi.org/10.1016/j.procbio.2005.07.016
  9. Kawashima, Y and P. York. 2008. Drug delivery applications of supercritical fluid technology. Adv. Drug Deliv. Rev. 60: 297-298. https://doi.org/10.1016/j.addr.2007.10.011
  10. Kim, J. H. 2006. Paclitaxel: recovery and purification in commercialization step. Kor. J. Biotechnol. Bioeng. 21: 1-10.
  11. Kim, J. H., I. S. Kang, H. K. Choi, S. S. Hong, H. S. Lee. 2000. Fractional precipitation for paclitaxel pre-purification from plant cell cultures of Taxus chinensis. Biotechnol. Lett. 22: 1753-1756. https://doi.org/10.1023/A:1005642001815
  12. Kim, S. Y., K. J. Kim, and S. K. Ryu. 2002. In situ analysis of growth mechanism in batch crystallization of phosphoric acid. Theories and Applications of Chem. Eng. 8: 3445-3448.
  13. Lee, J. Y. and J. H. Kim. 2011. Development and optimization of a novel simultaneous microwave-assisted extraction and adsorbent treatment process for separation and recovery of paclitaxel from plant cell cultures. Sep. Purif. Technol. 80: 240-245. https://doi.org/10.1016/j.seppur.2011.05.001
  14. Pyo, S. H., M. S. Kim, J. S. Cho, B. K. Song, B. H. Han, and H. J. Choi. 2005. Efficient purification and morphology characterization of paclitaxel from cell cultures of Taxus chinensis. J. Chem. Technol. Biotechnol. 79: 1162-1168.
  15. Pyo, S. H., H. B. Park, B. K. Song, B. H. Han, and J. H. Kim. 2004. A large-scale purification of paclitaxel from cell cultures of Taxus chinensis. Process Biochem. 39: 1985-1991. https://doi.org/10.1016/j.procbio.2003.09.028
  16. Raula, J., H. Eerikainen, and E. I. Kauppinen. 2004. Influence of the solvent composition on the aerosol synthesis of pharmaceutical polymer nanoparticles. Int. J. Pharm. 284: 13-21. https://doi.org/10.1016/j.ijpharm.2004.07.003
  17. Vehring, R. 2008. Pharmaceutical particle engineering via spray drying. Pharm. Res. 25: 999-1022. https://doi.org/10.1007/s11095-007-9475-1
  18. Weers, J. G., T. E. Tarara, and A. R. Clark. 2007. Design of fine particles for pulmonary drug delivery. Expert Opin. Drug Deliv. 4: 297-313. https://doi.org/10.1517/17425247.4.3.297
  19. Yeo, S. D., M. S. Kim, and J. Lee. 2003. Recrystallization of sulfathiazole and chlorpropamide using the supercritical fluid antisolvent process. J. Supercrit. Fluids 25: 143-154. https://doi.org/10.1016/S0896-8446(02)00094-3
  20. Zhang, H. X., J. X. Wang, Z. B. Zhang, Y. Le, Z. G. Shen, and J. F. Chen. 2009. Micronization of atorvastatin calcium by antisolvent precipitation process. Int. J. Pharm. 374: 106-113. https://doi.org/10.1016/j.ijpharm.2009.02.015