DOI QR코드

DOI QR Code

Cretaceous to Early Tertiary Granites and Magma Mixing in South Korea : Their Spatio-temporal Variations and Tectonic Implications (Multiple Slab Window Model)

남한의 백악기-제3기초 화강암과 마그마 혼합 : 시공간적 변화와 지구조적 의미(다중 슬랩 윈도우 모델)

  • Kim, Jong-Sun (Department of Geological Sciences, Pusan National University) ;
  • Kim, Kun-Ki (Department of Earth & Environmental Sciences, Gyeongsang National University) ;
  • Jwa, Yong-Joo (Department of Earth & Environmental Sciences, Gyeongsang National University) ;
  • Son, Moon (Department of Geological Sciences, Pusan National University)
  • 김종선 (부산대학교 지구환경시스템학부) ;
  • 김건기 (경상대학교 지구환경과학과) ;
  • 좌용주 (경상대학교 지구환경과학과) ;
  • 손문 (부산대학교 지구환경시스템학부)
  • Received : 2012.04.16
  • Accepted : 2012.05.03
  • Published : 2012.06.30

Abstract

Based on the petrologic and age data of the Cretaceous to early Tertiary granites in south Korea, we propose a new tectonic model reflecting their temporal and spatial variations. A number of petrographic and geochemical studies on the granites suggest that they originated from the magma formed by subduction of oceanic crust in continental margin and were emplaced in epizone. The MMEs with various shapes and sizes, which were produced due to the magma mixing caused by the injection of mafic magma from mantle during the crystallization of the granitic magma, are observed in the granites. The distributions of the MMEs and ages of the granites show a distinctive spatio-temporal distribution pattern. The distribution pattern can be explained by a multiple slab window model related to the ridge subduction of Izanagi-Pacific plates during the Late Cretaceous.

한반도 남부의 백악기-제3기초 화강암의 암석학적 특징과 연대측정 자료들을 종합하여 시공간적 변화를 반영하는 지구조 모델을 제안하고자 하였다. 여러 암석기재와 지화학적 연구결과로부터 이들 화강암류는 대륙 연변부에서 해양지각의 섭입에 의해 형성된 마그마 기원으로 지각 천처에서 정치된 특징을 보인다. 또한 화강암류 내에는 고화과정 중 맨틀에서 유래한 염기성 마그마의 주입에 의한 마그마 혼합을 지시하는 다양한 형태와 크기의 MME들이 분포한다. MME의 분포와 화강암의 연령자료를 함께 살펴보면 시공간적으로 일정한 시기의 것들이 일정한 지역에 한정되어 분포하는 양상을 보인다. 이러한 특징은 후기 백악기의 이자나기-태평양판의 해령섭입으로 인한 다중 슬랩 윈도우 모델에 의해 설명될 수 있다.

Keywords

References

  1. 강희철, 김인수, 2000, 영양지역에 분포하는 전기 백악기 하양층군에 대한 고자기 연구. 지질학회지, 36, 47-71.
  2. 강희철, 김인수, 손문, 정현정, 1996, 양산단층지역에 분포하는 퇴적암 및 화성암류에 대한 고자기 연구. 자원환경지질, 29, 753-765.
  3. 고정선, 2001, 경상분지내 남산 A-형 화강암과 경주 I-형 화강암류에 대한 광물학적, 지화학적 및 Sr-Nd 동위원소 연구. 부산대학교 이학박사 학위논문, 173p.
  4. 구성본, 이태섭, 최종호, 김광은, 박영수, 성낙훈, 1997, 안계, 김천, 선산지역 항공방사능/자력탐사 및 경상분지 자료종합. KR-96(C)-2, 한국자원연구소, 98p.
  5. 권성택, 1991, 우리나라 현생이언 화강암질암에 대한 사마리움-니오디미움 동위원소 연구: 지각의 성인 및 구조 고찰 (요약문). 지질학회지, 27, 528-529.
  6. 권성택, 1992, 남한 현생이언 화강암질암에 대한 납 동위원소 연구: 예비보고서 (요약문). 지질학회지, 28, 514.
  7. 김건기, 2006, 경상분지 백악기-제3기초 화강암류의 마그마 혼합과 불균질 혼합에 관한 연구. 경상대학교 이학박사 학위논문, 232p.
  8. 김건기, 김종선, 좌용주, 2005, 경상분지 남서부 와룡산 일대에 분포하는 백악기 화강암류에 관한 암석학적 연구: 마그마 불균질 혼합에 의한 화강암류의 조성변화. 암석학회지, 14, 12-23.
  9. 김근수, 김정진, 박맹언, 1997, 경상분지에 분포하는 화강암질암체에 대한 Rb-Sr 연대 (요약문). 한국암석학회 학술발표회 요약집, 20, 20p.
  10. 김상욱, 1986, 경상분지에서의 후기 백악기 화성활동에 관한 연구. 이상만 교수 송수기념논문집, 167-194.
  11. 김상중, 1997, 북부 경상분지의 화성활동과 다금속 광화작용에 관한 지화학 및 지질연대학적 연구. 충남대학교 이학박사 학위논문, 276p.
  12. 김인수, 강희철, 이현구, 1993a, 경상분지 남서부 진교-사천 지역 전기 백악기 퇴적암에 대한 고자기 연구. 광산지질, 26, 519-539.
  13. 김인수, 이현구, 윤혜수, 강희철, 1993b, 의성지역 백악기 암석에 대한 고자기 연구. 광산지질, 26, 403-420.
  14. 김종선, 2001, 경상분지 남부 지역의 화강암류에 산출되는 포유체의 암석학적 연구: 마그마 불균질 혼합에 관한 연구. 부산대학교 이학박사 학위논문, 210p.
  15. 김종선, 김건기, 좌용주, 이준동, 2004, 경상분지 화강암류에서 발견되는 엔클레이브(포유암)에 대한 암석기재적 연구. 암석학회지, 13, 1-15.
  16. 김종선, 이준동, 2000, 거제도 화강암질암의 지화학적 특성에 의한 마그마 불균질 혼합 증거. 지질학회지, 36, 19-38.
  17. 김종선, 이준동, 김인수, 백인성, 최보심, 2000, 울산 방어진 일대 화강암 내에 산출되는 포획암의 암석학적 연구. 지질학회지, 36, 73-92.
  18. 김종선, 이준동, 윤성효, 1998, 거제도 화강암질암의 마그마 불균질 혼합 증거: 1. 그 기재적 특성. 지질학회지, 34, 105-121.
  19. 김춘식, 김석욱, 김근수, 김국락, 손문, 김종선, 1999, 경남 양산 원동칼데라 중앙부의 각섬석-흑운모 화강암에 나타나는 포획암의 기원: 1, 암석기재학적 및 고자기학적 연구. 자원환경지질학회지, 32, 339-351.
  20. 김현주, 백인성, 2001, 경상남도 고성군에 분포하는 백악기 진동층의 퇴적상 및 퇴적환경. 지질학회지, 37, 235-256.
  21. 박영록, 2009, 정선 일대에 분포하는 백악기 몰운화강암체의 아다키틱한 지화학적 특성: 분별정출작용-동화작용에 의한 칼크-알칼리 마그마로부터 아다키틱한 마그마로의 전이. 지질학회지, 45, 345-360.
  22. 신인현, 김희남, 안건상, 1997, Sr, Nd 동위원소비에 의한 한반도 남서부지역 화강암류의 기원. 한국지구과학회지, 18, 99-104.
  23. 윤성효, 김동현, 김병훈, 김동현, 구태우, 2011, 감포일대 제3기분지내 화강암체의 SHRIMP U-Pb 저어콘 연대. 2011년 춘계지질과학기술 공동학술대회 논문집, 118.
  24. 위수민, 김윤지, 최선규, 박정우, 유인창, 2007, 진동화강암체의 아다카이틱한 특성. 자원환경지질, 40, 223-236.
  25. 위수민, 박재용, 2009, 영남육괴 남서부 복내지역에 분포하는 아다카이트질 화강암체의 성인 및 지화학적 특성. 지구과학회지, 30, 427-443. https://doi.org/10.5467/JKESS.2009.30.4.427
  26. 위수민, 최선규, 유인창, 신홍자, 2006, 경상분지 서남부에 분포하는 백악기 진동화강암의 지화학적 특성: 아다카이틱(adakitic)한 특성을 중심으로. 자원환경지질, 39, 555-566.
  27. 이상만, 김상욱, 진명식, 1987, 남한의 백악기-제3기 화성활동과 지구조적 의의. 지질학회지, 23, 338-359.
  28. 이종혁, 원종관, 김정환, 이창진, 2002, 한국의 지질. 대한지질학회, 시그마프레스, 서울, 802p.
  29. 정창식, 권성택, 김정민, 장병욱, 1998, 경상분지 북부에 분포하는 온정리 화강암에 대한 암석화학적, 동위원소 지구화학적 연구: 경상분지 다른 지역과 서남 일본 내대에 분포하는 백악기-제3기 화강암류와의 비교 고찰. 암석학회지, 7, 77-97.
  30. 좌용주, 1997, 남해지역 금산 미문상화강암에 대한 암석기재. 한국지구과학회지, 18, 426-432.
  31. 좌용주, 김건기, 2000, 의성분지 보현산 일대 화강암류와 포획암에 대한 암석학적 연구. 암석학회지, 9, 187-203.
  32. 좌용주, 김종선, 김건기, 2005, 우리나라 트라이아스기 화강암의 스위트/슈퍼스위트 분류. 암석학회, 14, 226-236.
  33. 좌용주, 이용일, Orihasi, Y., 2004, 구산동 응회암과 진동 화강암에서 산출되는 저콘에 대한 U-Pb 연대와 진동층 퇴적시기에 대한 고찰. 대한지질학회 2004년 추계학술발표회 초록집, 73.
  34. 진명식, 김성재, 지세정, 신성천, 주승환, 1993, 옥천습곡대 중앙부 고생대-중생대 화강암체의 방사성 연대측정연구. 한국자원연구소, KR-92-1G-2-1. 34p.
  35. 진명식, 주승환, 지세정, 김성재, 신성천, 1992, 방사성 동위원소 연대측정에 의한 옥천습곡대 북서부 중생대 화강암체의 관입시기와 지열사 연구. 한국자원연구소, KR-91-1D-2. 35p.
  36. 진미정, 김종선, 이준동, 2002, 방어진 화강암에 나타나는 라파키비 조직의 성인에 관한 연구. 암석학회지, 11, 30-48.
  37. 진미정, 김종선, 이준동, 김인수, 백인성, 2000, 양산시 원효산 화강암에 산출되는 포획암에 대한 암석학적 연구. 암석학회지, 9, 142-168.
  38. 한국자원연구소(KIGAM), 1995, 한국 심성암 동위원소연대 지도. 성지문화사.
  39. 황병훈, 2004, 경상분지 남부지역의 화강암질암에 대한 암석학, 동위원소 및 성인. 부산대학교 이학박사 학위논문, 306p.
  40. 황병훈, W. G. Ernst, 손문, 이준동, 2008, 경상분지 양산단층 주변 화강암류의 SHRIMP-RG 연대와 지구조적 의의. 한국암석학회.한국광물학회 2008년 공동학술발표회 논문집, 22.
  41. 황병훈, 이준동, 양경희, 2004, 양산단층 주변에 분포하는 화강암질암의 암석학적 연구: 양산단층의 수평 변위량. 지질학회지, 40, 161-178.
  42. Barbarin, B., 2005, Mafic magmatic enclaves and mafic rocks associated with some granitoids of the central Sierra Nevada batholith, California: nature, origin, and relations with the hosts. Lithos, 80, 155-177. https://doi.org/10.1016/j.lithos.2004.05.010
  43. Barbarin, B. and Didier, J., 1991, Macroscopic features of mafic microgranular enclaves. In Enclaves and Granite Petrology (ed. J. Didier and B. Barbarin), Elsevier, Amsterdam, 253-262.
  44. Bateman, R., 1995, The interplay between crystallization, replenishment and hybridization in large felsic magama chambers. Earth Science Reviews, 39, 91-106. https://doi.org/10.1016/0012-8252(95)00003-S
  45. Bonin, B., 2004, Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily implay two contrasting, mantle and crustal, sources? A review. Lithos, 78, 1-24. https://doi.org/10.1016/j.lithos.2004.04.042
  46. Chang, B.U., 1997, A study on the lead isotopic compositions of ore deposits and igneous rocks in the Gyeongsang basin, Korea. Ph. D. dissertation, Seoul National University, 100p.
  47. Chappell, B.W. and White, A.J.R., 1974, Two contrasting granite types. Pacific Geology, 173-174.
  48. Chappell, B.W., White, A.J.R. and Wyborn, D., 1987, The importance of residual source material (restite) in granite petrogenesis. Journal of Petrology, 28, 1111-1138. https://doi.org/10.1093/petrology/28.6.1111
  49. Chen, Y.D., Price, R.C. and White, A.J.R., 1989, Inclusion in three S-type granites from Southeastern Australia. Journal of Petrology, 30, 1181-1218. https://doi.org/10.1093/petrology/30.5.1181
  50. Choe, W.H. and Jwa, Y.J., 2004, Petrological and geochemical evidences for magma mixing in the Palgongsan Pluton. Geosciences Journal, 8, 343-354. https://doi.org/10.1007/BF02910470
  51. Chough, S.K. and Sohn, Y.K., 2010, Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view. Earth-Science Reviews, 101, 225-249. https://doi.org/10.1016/j.earscirev.2010.05.004
  52. Dickinson, W.R. and Snyder, W.S., 1979, Geometry of subducted slabs related to San Andreas transform. The Journal of Geology, 87, 609-627. https://doi.org/10.1086/628456
  53. Didier, J., 1973, Granites and Their Enclaves: The Bearing of Enclaves on the Origin of Granites. In Development in Petrology (ed. J. Didier), Elsevier, Amsterdam, 393p.
  54. Didier, J. and Barbarin, B., 1991, Enclaves and Granite Petrology, Elsevier, Amsterdam, 625p.
  55. Dodge, F.C.W. and Kistler, R.W., 1990, Some additional observations on inclusions in the granitic rocks of the Sierra Nevada. Journal of Geophysical Research, 95, 17841-17848. https://doi.org/10.1029/JB095iB11p17841
  56. Elburg, M.A., 1996, Evidence of isotopic equilibration between microgranitoid enclaves and host granodiorite, Warburton Granodiorite, Lachlan Fold Belt, Australia. Lithos, 38, 1-22. https://doi.org/10.1016/0024-4937(96)00003-5
  57. Engebretson, D.C., Cox, A. and Gordon, R.G., 1985, Relative motion between oceanic and continental plates in the Pacific Basin. Geological Society of America Special Paper, 206, 1-59.
  58. Ferrari, L., 2004, Slab detachment control on mafic volcanic pulse and mantle heterogeneity in central Mexico. Geology, 32, 77-80. https://doi.org/10.1130/G19887.1
  59. Frederiksen, A.W., Bostock, M.G., VanDecar, J.C. and Cassidy, J.F., 1998, Seismic structure of the upper mantle beneath the northern Canadian Cordillera from teleseismic travel-time inversion. Tectonophysics, 294, 43-55. https://doi.org/10.1016/S0040-1951(98)00095-X
  60. Gorring, J.L. and Kay, S.M., 2001, Mantle processes and sources of Neogene slab window magmas from southern Patagonia, Argentina. Journal of Petrology, 42, 1067-1094. https://doi.org/10.1093/petrology/42.6.1067
  61. Guo, F., Nakamuru, E., Fan, W., Kobayoshi, K. and Li, C., 2007, Generation of Palaeocene adakitic andesites by magma mixing; Yanji area, NE China. Journal of Petrology, 48, 661-692. https://doi.org/10.1093/petrology/egl077
  62. Hilde, T.W.C., Uyeda, S. and Kronenke, L., 1977, Evolution of the western Pacific and its margin. Tectonophysics, 38, 145-165. https://doi.org/10.1016/0040-1951(77)90205-0
  63. Hirooka, K., Kato, M., Morisada, T. and Azuma, Y., 2002, Paleomagnetic study on the dinosaur-bearing strata of the Tetori Group, central Japan. Memoir of the Fukui Prefectural Dinosaur Museum, 1, 54-62.
  64. Hirooka, K., Uchiyama, S., Date, T., Kannai, H., Hattori, I. and Nakajima, T., 1983, Paleomagnetic evidence of accretion and tectonism of the Hida and the Circum-Hida Terranes, central Japan. In Proceedings of Circum-Pacific Terrane Conference(ed. D.G. Howell et al.), Stanford University Publication, Geological Sciences, Stanford, 115-117.
  65. Holden, P., Halliday, A.N. and Stephens, W.E., 1987, Neodymium and strontium isotope content of microdiorite enclaves points to mantle input to granitoid production. Nature, 330, 53-56. https://doi.org/10.1038/330053a0
  66. Holden, P., Halliday, A.N., Stephens, W.E. and Henney, P.J., 1991, Chemical and isotopic evidence for major mass transfer between mafic enclaves and fesic magma. Chemical Geology, 92, 135-152. https://doi.org/10.1016/0009-2541(91)90053-T
  67. Hwang, B.H., Ernst, W.G. and Yang, K., 2011, Two different magma series imply a Palaeogene tectonic transition from contraction to extension in the SE Korean Peninsula. International Geology Review, DOI:10.1080/00206814.2011.636990.
  68. Imaoka, T., Kiminami, K., Nishida, K., Takemoto, M., Ikawa, T., Itaya, T., Kagami, H. and Iizumi, S., 2011, K-Ar age and geochemistry of the SW Japan Paleogene cauldron cluster: Implications for Eocene-Oligocene thermotectonic reactivation. Journal of Asian Earth Sciences, 40, 509-533. https://doi.org/10.1016/j.jseaes.2010.10.002
  69. Ishihara, S., 1977, The magnetite-series and ilmenite-series granitic rocks. Mining Geology, 27, 293-305.
  70. Ishihara, S., 2007, Origin of the Cenozoic-Mesozoic magnetite-series and ilmenite-series granitoids in East Asia. Gondwana Research, 11, 247-260. https://doi.org/10.1016/j.gr.2006.04.003
  71. Janousek, V., Baraithwaite, C.J.R., Bowes, D.R. and Gerdes, A., 2004, Magma-mixing in the genesis of Hercynian calc-alkaline granitoids: an integrated petrographic and geochemical study of the Sázava intrusion, Central Bohemian Pluton, Czech Republic. Lithos, 78, 67-99. https://doi.org/10.1016/j.lithos.2004.04.046
  72. Jin, M.S., 1980, Geological and isotopic contrasts of the Jurassic and Cretaceous granites in South Korea. Journal of Geological Society of Korea, 16, 205-215.
  73. Jin, M.S., 1985a, A relationship between tectonic setting and chemical composition of the Cretaceous granitic rocks in southern Korea. Journal of Geological Society of Korea, 21, 67-73.
  74. Jin, M.S., 1985b, Geochemistry of the Cretaceous to early Tertiary granitic rocks in Southern Korea, Pt. I. Major elements geochemistry. Journal of Geological Society of Korea, 21, 297-316.
  75. Jin, M.S., 1988, Geochemistry of the Cretaceous to early Teriary granitic rocks in southern Korea. part II : Trace element geochemistry. Geological Society of Korea, 24, 168-188.
  76. Jin, M.S., 2002, The study of Mesozoic igneous activity in the southern part of the Korean Peninsula - History, problem and perspectives -. In Mesozoic sedimentation, igneous activity and mineralization in South Korea (ed. M.S. Jin et al.), KIGAM, 111-126.
  77. Jin, M.S., Lee, S.R., Choi, H.I., Park, K.H., Koh, S.M. and Cho, D.L., 2002, Mesozoic sedimentation, igneous activity and mineralization in South Korea. The 1st and 2nd Symposiums on the Geology of Korea Spacial Publication No. 1, KIGAM, 243p.
  78. Johnston, S.T. and Thorkelson, D.J., 1997, Cocos-Nazca slab window beneath Central America. Earth and Planetary Science Letters, 146, 465-474. https://doi.org/10.1016/S0012-821X(96)00242-7
  79. Jwa, Y.J., 2002, Geochemistry of Cretaceous granites in South Korea: The implications for tectonically controlled granitic magmatism. In Mesozoic sedimentation, igneous activity and mineralization in South Korea (ed. M.S. Jin et al.), KIGAM, 157-166.
  80. Jwa, Y.J., 2004, Possible source rocks of Mesozoic granites in South Korea: implications for crustal evolution in NE Asia. Transactions of the Royal Society of Edinburgh: Earth Sciences, 95, 181-198. https://doi.org/10.1017/S0263593304000161
  81. Kay, S.M., Ramos, V.A. and Marquez, M., 1993, Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America. Journal of Geology, 101, 703-714. https://doi.org/10.1086/648269
  82. Kerim, K., 2006, Hybridization of mafic microgranular enclaves: Mineral and whole-rock chemistry evidence from the Karamadazi Granitoid, Central Turkey. International Journal of Earth Sciences, 95, 587-607. https://doi.org/10.1007/s00531-006-0090-x
  83. Kim, J.S., Shin, K.C. and Lee, J.D., 2002, Petrographical study on the Yucheon granite and its enclaves. Geosciences Journal, 6, 289-302. https://doi.org/10.1007/BF03020614
  84. Kim, K.H., Park, S.S. and Na, C.K., 1996, Nd and Sr isotopic signatures of Mesozoic granitoids in South Korea. Resource Geology, 46, 215-226.
  85. Kinoshita, O., 1995, Migration of igneous activity related to ridge subduction in southwest Japan and the East Asian continental margin from the Mesozoic to the Paleogene. Tectonophysics, 245, 25-35. https://doi.org/10.1016/0040-1951(94)00211-Q
  86. Kinoshita, O., 1999, A migration model of magmatism explaining a ridge subduction, and its details on a statistical analysis of the granitie ages in Cretaceous southwest Japan. The Island Arc, 8, 181-189. https://doi.org/10.1046/j.1440-1738.1999.00230.x
  87. Kinoshita, O., 2002, Possible manifestations of slab window magmatisms in Cretaceous southwest Japan. Tectonophysics, 344, 1-13. https://doi.org/10.1016/S0040-1951(01)00262-1
  88. Kwon, S.T. and Sagong, H., 2002, Regional Pb-Nd-Sr isotopic differences of the Mesozoic granitoids in South Korea: Implications for the basement structure. Goldschmidt Conference Abstracts, A426.
  89. Lee, G., Besse, J. and Courtillot, V., 1987, Eastern Asia in the Cretaceous: New paleomagnetic data form South Korea and a new look at Chinese and Japanese data. Journal of Geophysical Research, 92, 3580-3596. https://doi.org/10.1029/JB092iB05p03580
  90. Lee, J.I., 1991, Petrology, mineralogy and isotopic study of the shallow-depth emplaced granitic rocks, southern part of the Kyeongsang Basin, Korea: Origin of micrographic granite. Ph. D. dissertation, University of Tokyo, 197p.
  91. Lee, J.I., 1997. A review on the origin of micrographic granites Masanites.in the southern Kyongsang Basin, Korea. Geosciences Journal, 1, 202-216. https://doi.org/10.1007/BF02910227
  92. Lee, J.I., Kagami, H. and Nagao, K., 1995, Rb-Sr and K-Ar age determination of the granitic rocks in the Southern part of the Kyeongsang basin, Korea: Implications for cooling history of granitic magmatism during late Cretaceous. Geochemical Journal., 29, 363-376. https://doi.org/10.2343/geochemj.29.363
  93. Lee, Y.I., 2008, Paleogeographic reconstructions of the East Asia continental margin during the middle to late Mesozoic. Island Arc, 17, 458-470. https://doi.org/10.1111/j.1440-1738.2008.00637.x
  94. Lee, Y.I. and Kim, J.Y., 2005, Provenance of the Hayang Group (Early Cretaceous) in the Yeongyang Subbasin, SE Korea and its bearing on the Cretaceous palaeogeography of SW Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 228, 278-295. https://doi.org/10.1016/j.palaeo.2005.06.017
  95. Levin, V., Shaprio, N.M., Park, J. and Ritzwoller, M.H., 2005, Slab portal beneath the western Aleutians. Geology, 33, 253-256. https://doi.org/10.1130/G20863.1
  96. Madsen, J.K., Thorkelson, D.J., Friedman, R.M. and Marshall, D.D., 2006, Cenozoic to Recent plate configurations in the Pacific Basin: Ridge subduction and slab window magmaism in western North America. Geosphere, 2, 11-34. https://doi.org/10.1130/GES00020.1
  97. Maruyama, S., Iozaki, Y., Kimura, G. and Terabayashi, M., 1997, Paleogeographic maps of the Japanese islands: Plate tectonic synthesis from 750 Ma to the Present. The Island Arc, 6, 121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
  98. Mass, R., Nicholls, I.A. and Legg, C., 1997, Igneous and metamorphic enclaves in the S-type Deddick Granodiorite, Lachlan Fold Belt, SE Australia: Petrographic, geochemical and Nd-Sr isotopic evidence for crustal melting and magma mixing. Journal of Petrology, 38, 815-841. https://doi.org/10.1093/petroj/38.7.815
  99. McCrory, P.A. and Wilson, D., 2009, Introduction to Special Issue on: Interpreting the tectonic evolution of Pacific Rim margins using plate kinematics and slab-window volcanism. Tectonophysics, 464, 3-9. https://doi.org/10.1016/j.tecto.2008.03.015
  100. McKenzie, D.P. and Morgan, W.J., 1969, Evolution of triple junctions. Nature, 224, 125-133. https://doi.org/10.1038/224125a0
  101. Na, C.K., 1994, Genesis of granitoid batholiths of Okchonzone, Korea and its implications for crustral evolution. Ph. D. dissertation, University of Tsukuba, 154p.
  102. Nakajima, T., 1996, Cretaceous granitoids in SW Japan and their bearing on the crust-forming process in the eastern Eurasian margin. In The third Hutton symposium on the origin of granites and related rocks (ed. M. Brown et al.), Geological Society of America Special Paper, 315, 183-191.
  103. Osozawa, S., 1997, The cessation of igneous activity and uplift when an actively spreading ridge is subducted beneath an island arc. The Island Arc, 6, 361-71. https://doi.org/10.1111/j.1440-1738.1997.tb00046.x
  104. Otofugi, Y., 1996, Large tectonic movement of the Japan Arc in late Cenozoic times inferred from the paleomagnetism: Review and synthesis. The Island Arc, 5, 129-149.
  105. Otofugi, Y., Matsuda, T. and Nohda, S., 1985, Opening mode of the Japan Sea inferred from the palaeomagnetism of the Japan Arc. Nature, 317, 603-604. https://doi.org/10.1038/317603a0
  106. Pardo, M. and Suarez, G., 1995, Shape of the subducted Rivera and Cocos plates in southern Mexico: seismic and tectonic implications. Journal of Geophysical Research, 100, 12357-12373. https://doi.org/10.1029/95JB00919
  107. Park, T.H., Iwamori, H, Orihashi, Y., and Jwa, Y.J., 2005, Zircon U-Pb ages for Creta-Tertiary granites, south Korea: Implications for spatiotemporal changes in subduction-related magmatism (abstracts). Japan Earth and Planetary Science Joint Meeting (CD-ROM), Oceanographic Society of Japan, Volcanological Society of Japan, Japanese Association of Mineralogists, Petrologists and Economic Geologists, Meteorological Society of Japan, Mineralogical Society of Japan et al.
  108. Park, Y.H., Doh, S.J., Ryu, I.C. and Suk, D., 2005, A synthesis of Cretaceous palaeomagnetic data from South Korea: Tectonic implications in East Asia. Geophysical Journal International, 162, 709-724. https://doi.org/10.1111/j.1365-246X.2005.02584.x
  109. Poli, G.E. and Tommasini, S., 1991, Model for the origin and significance of microgranular enclaves in calc-alkaline granitoids. Journal of Petrology, 32, 657-666. https://doi.org/10.1093/petrology/32.3.657
  110. Poli, G., Tommasini, S. and Halliday, A.N., 1996, Trace element and isotopic exchange during acid-basic magma interaction process. Transactions of the Royal Society of Edinburgh, Earth Sciences, 87, 225-232. https://doi.org/10.1017/S0263593300006635
  111. Roddick, J.A., 1983, Circum-Pacific plutonic terances: an overview. Memorial of Geological Society of America, 159, 1-3. https://doi.org/10.1130/MEM159-p1
  112. Rogers, J.J.W., 1993, A history of the Earth. Cambridge University Press, Cambridge, 312p.
  113. Shin, S.C. and Nishimura, S., 1993, Thermal and uplift histories of Mesozoic granites in Southeast Korea: new fission track evidences. Journal of the Petrological Society of Korea, 2, 104-121.
  114. Snyder, W.S., Dickinson, W.R. and Silberman, M.L., 1976, Tectonic implications of space-time patterns of Cenozoic magmatism in the western Unites States. Earth and Planetary Science Letters, 32, 91-106. https://doi.org/10.1016/0012-821X(76)90189-8
  115. Thorkelson, D.J., 1996, Subduction of diverging plates and the principles of slab window formation. Tectonophysics, 255, 47-63. https://doi.org/10.1016/0040-1951(95)00106-9
  116. Thorkelson, D.J. and Breitsprecher, K., 2005, Partial melting of slab window margins: genesis of adakitic and non-adakitic magmas. Lithos, 79, 25-41. https://doi.org/10.1016/j.lithos.2004.04.049
  117. Tsukada, K., 2003, Jurassic dextral and Cretaceous sinistral movements along the Hida marginal belt. Gondwana Research, 6, 687-698. https://doi.org/10.1016/S1342-937X(05)71017-0
  118. Uno, K., 2002, Late Cretaceous palaeomagnetic results from Southwest Japan: New insights for early Cenozoic clockwise rotation. Geophysical Journal International, 149, 617-624. https://doi.org/10.1046/j.1365-246X.2002.01639.x
  119. Uyeda, S. and Miyashiro, A., 1974, Plate tectonics and the Japanese islands: A systhesis. Geological Society of America Bulletin, 85, 1159-1170. https://doi.org/10.1130/0016-7606(1974)85<1159:PTATJI>2.0.CO;2
  120. Wiebe, R.A., 1996, Mafic-silicic layered intrusions: The role of basaltic injections on magmatic processes and evolution in silicic magma chambers. Transactions of the Royal Society of Edinburgh, Earth Sciences, 87, 233-242. https://doi.org/10.1017/S0263593300006647
  121. Wiebe, R.A., Manon, M.R., Hawkins, D.P. and McDonough, W.F., 2004, Late-Stage mafic injection and thermal rejuvanation of the Vinal Haven Granite, Coastal Maine. Jounal of Petrology, 45, 2133-2153. https://doi.org/10.1093/petrology/egh050
  122. Yoshikura, S. and Yamamoto, T., 1995. Mafic magmatic enclaves in granitoids: an example in the Ryoke granite of the Takanawa peninsula, Shikoku. Abstr., 102nd Ann. Meet. Geol. Soc. Jpn., Hiroshima, 269.
  123. Zhang, Y.B., Zhai, M., Hou, Q.L., Li, T.S., Liu, F. Hu, B., 2012, Late Cretaceous volcanic rocks and associated granites in Gyeongsang Basin, SE Korea: Their chronological ages and tectonic implications for cratonic destruction of the North China Craton. Journal of Asian Earth Sciences, 47, 252-264. https://doi.org/10.1016/j.jseaes.2011.12.011
  124. Zhao, X., Coe, R.S., Chang, K.H., Park, S.O., Omarzai, S.K., Zhu, R., Zhou, Y., Gilder, S. and Zheong, Z., 1999. Clockwise rotations recorded in Early Cretaceous rocks of South Korea: Implications for tectonic affinity between the Korean Peninsula and North China. Geophysical Journal International, 139, 447-463. https://doi.org/10.1046/j.1365-246x.1999.00944.x

Cited by

  1. Case Study of a Stability Analysis of a Granitoid Slope in the Gansung-Hyunnae area, GangwonDo vol.22, pp.3, 2012, https://doi.org/10.9720/kseg.2012.3.331
  2. Petrological characteristics of the Yeongdeok granite vol.23, pp.2, 2014, https://doi.org/10.7854/JPSK.2014.23.2.31
  3. Determination of Rock Cleavages Using AMS (Anisotropy of Magnetic Susceptibility): a Case Study on the Geochang Granite Stone, Korea vol.24, pp.3, 2015, https://doi.org/10.7854/JPSK.2015.24.3.209
  4. Contrasting source domains for the Phanerozoic granitoids in South Korea revealed by zircon Hf isotopic signatures vol.20, pp.5, 2016, https://doi.org/10.1007/s12303-016-0028-7
  5. Magnetic fabric (anisotropy of magnetic susceptibility) constraints on emplacement mechanism of clastic dikes vol.122, pp.5, 2017, https://doi.org/10.1002/2016JB013583
  6. Geometry and kinematics of fault systems in the Uiseong block of the Gyeongsang Basin, and their roles on the basin evolution vol.53, pp.2, 2017, https://doi.org/10.14770/jgsk.2017.53.2.241
  7. Chemical evidence of magma mingling and mixing in plutonic rocks of the Bunam Stock, Cheongsong vol.52, pp.6, 2016, https://doi.org/10.14770/jgsk.2016.52.6.863
  8. Double injection events of mafic magma into supersolidus Yucheon granites to produce two types of mafic enclaves in the Cretaceous Gyeongsang Basin, SE Korea vol.108, pp.2, 2014, https://doi.org/10.1007/s00710-013-0296-0
  9. SHRIMP U-Pb Zircon Ages of the Gusandong (Kusandong) Tuff in the Cretaceous Gyeongsang Basin vol.22, pp.3, 2013, https://doi.org/10.7854/JPSK.2013.22.3.235
  10. Field Evidence of Magma Mixing from Concentric Zoning and Mafic Microgranular Enclaves in Bunam Stock, Korea vol.25, pp.4, 2016, https://doi.org/10.7854/JPSK.2016.25.4.349