DOI QR코드

DOI QR Code

Dual-color FISH Karyotype and rDNA Distribution Analyses on Four Cucurbitaceae Species

  • Waminal, Nomar Espinosa (Plant Biotechnology Institute, Department of Life Science, Sahmyook University) ;
  • Kim, Hyun-Hee (Plant Biotechnology Institute, Department of Life Science, Sahmyook University)
  • Received : 2011.11.16
  • Accepted : 2012.01.03
  • Published : 2012.02.29

Abstract

Karyotype and ribosomal DNA distribution on four Cucurbitaceae species was analyzed through dual-color fluorescence in situ hybridization (FISH) using 5S and 45S rDNA probes. Chromosome sizes varied slightly among the species with Cucumis sativus relatively the largest (~2.5 ${\mu}m$) and Momordica charantia the smallest (~1 ${\mu}m$). In Cucumis sativus L. (2n = 14), the 45S rDNA hybridized on the pericentromeric area of five chromosomes (metacentric a, b, c, g, and submetacentric d) and the 5S rDNA on the region proximal to the centromere of the short arm of chromosome e. In Luffa cylindrica (L.) Roem. (2n = 26), the 45S rDNA hybridized on the distal regions of the short arms of five chromosomes (metacentric a, b, c, f, and submetacentric d) and the 5S rDNA on the region proximal to the centromere of the short arm of chromosome e. In Lagenaria siceraria (Molina) Standl. (2n = 22), the 45S rDNA hybridized on the distal regions of the short arms of two chromosomes (submetacentric b and metacentric e) and the 5S rDNA juxtaposed with the 45S rDNA signal in a region proximal to the centromere on chromosome e. In Momordica charantia L. (2n = 22), the 45S rDNA hybridized on the majority of the short arms of two metacentric chromosomes (d and k) and the 5S rDNA on the proximal region of the short arm of chromosome e. The interphase and metaphase rDNA distribution and FISH karyotype analyses of the four species showed the possible fate of rDNAs through the process that lead to the interspecific variations among the cucurbits. These results will be useful in elucidating the phylogenetic relationships among Cucurbitaceae species.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Bhaduri, P.N. and P.C. Bose. 1947. Cyto-genetical investigations in some common cucurbits, with special reference to fragmentation of chromosomes as a physical basis of speciation. J. Genet. 48: 237-256. https://doi.org/10.1007/BF02989384
  2. Chen, J.F., J.E. Staub, J.W. Adelberg, and J. Jiang. 1999. Physical mapping of 45S rRNA genes in Cucumis species by fluorescence in situ hybridization. Can. J. Bot. 77:389-393.
  3. Chung, S.M., J.E. Staub, and J.F. Chen. 2006. Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome 49:219-229. https://doi.org/10.1139/G05-101
  4. Coen, E.S. and G.A. Dover. 1983. Unequal exchanges and the coevolution of X and Y rDNA arrays in Drosophila melanogaster. Cell 33:849-855. https://doi.org/10.1016/0092-8674(83)90027-2
  5. Datson, P.M. and B.G. Murray. 2006. Ribosomal DNA locus evolution in Nemesia: Transposition rather than structural rearrangement as the key mechanism? Chromosome Res. 14:845-857. https://doi.org/10.1007/s10577-006-1092-z
  6. de Melo, N.F. and M. Guerra. 2003. Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Ann. Bot. 92:309-316. https://doi.org/10.1093/aob/mcg138
  7. Dong, F., J. Song, S.K. Naess, J.P. Helgeson, C. Gebhardt, and J. Jiang. 2000. Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor. Appl. Genet. 101:1001-1007. https://doi.org/10.1007/s001220051573
  8. Dover, G.A. 1986. Molecular drive in multigene families: How biological novelities arise, spread, and assimilated. Trends Genet. 2:159-165. https://doi.org/10.1016/0168-9525(86)90211-8
  9. Dover, G.A. 1989. Linkage disequilibrium and molecular drive in the rDNA gene family. Genetics 122:249-252.
  10. Drouin, G. and M. Moniz de Sá. 1995. The concerted evolution of 5S ribosomal genes linked to the repeat units of other multigene families. Mol. Biol. Evol. 12:481-493.
  11. Dubcovsky, J. and J. Dvorak. 1995. Ribosomal RNA multigene loci: Nomads of the Triticeae genomes. Genetics 140:1367-1377.
  12. Dutt, B. and R.P. Roy. 1969. Cytogenetical studies in the interspecific hybrid of Luffa cylindrica L. and L. graveolens Roxb. Genetica 40:7-18. https://doi.org/10.1007/BF01787335
  13. Dutt, B. and R.P. Roy. 1971. Cytogenetic investigations in Cucurbitaceae I. Interspecific hybridization in Luffa. Genetica 42:139-156. https://doi.org/10.1007/BF00154845
  14. Eickbush, T.H. and D.G. Eickbush. 2007. Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175: 477-485. https://doi.org/10.1534/genetics.107.071399
  15. Fukui, K. 2005. Recent development of image analysis methods in plant chromosome research. Cytogenet. Genome Res. 109:83-89. https://doi.org/10.1159/000082386
  16. Ganal, M., I. Riede, and V. Hemleben. 1986. Organization and sequence analysis of two related satellite DNAs in cucumber (Cucumis sativus L.). J. Mol. Evol. 23:23-30. https://doi.org/10.1007/BF02100995
  17. Gerlach, W.L. and J.R. Bedbrook. 1979. Cloning and characterization of ribosomal rDNA genes from wheat and barley. Nucleic Acids Res. 7:1869-1885. https://doi.org/10.1093/nar/7.7.1869
  18. Han, Y.H., Z.H. Zhang, C. Liu, J. Liu, S.W. Huang, J.M. Jiang, and W.W. Jin. 2009. Centromere repositioning in cucurbit species: Implication of the genomic impact from centromere activation and inactivation. Proc. Natl. Acad. Sci. 106:14937-14941. https://doi.org/10.1073/pnas.0904833106
  19. Hanson, R.E., M.N. Islam-Faridi, E.A. Percival, C.F. Crane, Y. Ji, T.D. McKnight, D.M. Stelly, and H.J. Price. 1996. Distribution of 5S and 18S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma 105:55-61. https://doi.org/10.1007/BF02510039
  20. Hoshi, Y., W. Plader, and S. Malepszy. 1999. Physical mapping of 45S rRNA gene loci in the cucumber (Cucumis sativus L.) using fluorescence in situ hybridization. Caryologia 52:49-57. https://doi.org/10.1080/00087114.1998.10589153
  21. Huang, S., R. Li, Z. Zhang, L. Li, X. Gu, W. Fan, W.J. Lucas, X. Wang, B. Xie, P. Ni, Y. Ren, H. Zhu, J. Li, K. Lin, W. Jin, Z. Fei, G. Li, J. Staub, A. Kilian, E.A.G. van der Vossen, Y. Wu, J. Guo, J. He, Z. Jia, Y. Ren, G. Tian, Y. Lu, J. Ruan, W. Qian, M. Wang, Q. Huang, B. Li, Z. Xuan, J. Cao, Asan, Z. Wu, J. Zhang, Q. Cai, Y. Bai, B. Zhao, Y. Han, Y. Li, X. Li, S. Wang, Q. Shi, S. Liu, W.K. Cho, J.-Y. Kim, Y. Xu, K. Heller-Uszynska, H. Miao, Z. Cheng, S. Zhang, J. Wu, Y. Yang, H. Kang, M. Li, H. Liang, X. Ren, Z. Shi, M. Wen, M. Jian, H. Yang, G. Zhang, Z. Yang, R. Chen, S. Liu, J. Li, L. Ma, H. Liu, Y. Zhou, J. Zhao, X. Fang, G. Li, L. Fang, Y. Li, D. Liu, H. Zheng, Y. Zhang, N. Qin, Z. Li, G. Yang, S. Yang, L. Bolund, K. Kristiansen, H. Zheng, S. Li, X. Zhang, H. Yang, J. Wang, R. Sun, B. Zhang, S. Jiang, J. Wang, Y. Du, and S. Li. 2009. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 41:1275-1281. https://doi.org/10.1038/ng.475
  22. Hwang, Y.J., H.H. Kim, S.J. Kwon, T.J. Yang, H.C. Ko, B.S. Park, J.D. Chung, and K.B. Lim. 2009. Karyotype analysis of three Brassica species using five different repetitive DNA markers by fluorescence in situ hybridization. Kor. J. Hort. Sci. Technol. 27: 456-463.
  23. Kato, A., J.C. Lamb, and J.A. Birchler. 2004. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc. Natl. Acad. Sci. 101:13554-13559. https://doi.org/10.1073/pnas.0403659101
  24. Koo, D.H., H.W. Choi, J. Cho, Y. Hur, and J.W. Bang. 2005. A high-resolution karyotype of cucumber (Cucumis sativus L. 'Winter Long') revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome 48:534-540. https://doi.org/10.1139/g04-128
  25. Koo, D.H., Y. Hur, D.C. Jin, and J.W. Bang. 2002. Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Mol. Cells 13:413-418.
  26. Koo, D.H., Y.W. Nam, D. Choi, J.W. Bang, H. de Jong, and Y. Hur. 2010. Molecular cytogenetic mapping of Cucumis sativus and C. melo using highly repetitive DNA sequences. Chromosome Res. 18:325-336. https://doi.org/10.1007/s10577-010-9116-0
  27. Kubista, M., B. Åkerman, and B. Nordén. 1987. Characterization of interaction between DNA and 4',6-diamidino-2-phenylindole by optical spectroscopy. Biochemistry 26:4545-53. https://doi.org/10.1021/bi00388a057
  28. Leitch, I.J. and J.S. Heslop-Harrison. 1993. Physical mapping of sites of 5S rDNA sequences and one site of the $\alpha$-amylase-2 gene in barley (Hordeum vulgare). Genome 36:517-523. https://doi.org/10.1139/g93-071
  29. Levan, A., K. Fredga, and A.A. Sandberg. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52:201-220.
  30. Levsky, J.M. and R.H. Singer. 2003. Fluorescence in situ hybridization: past, present and future. J. Cell Sci. 116:2833-2838. https://doi.org/10.1242/jcs.00633
  31. Lim, K.B., H. de Jong, T.J. Yang, J.Y. Park, S.J. Kwon, J.S. Kim, M.H. Lim, J.A. Kim, M. Jin, Y.M. Jin, S.H. Kim, Y.P. Lim, J.W. Bang, H.I. Kim, and B.S. Park. 2005. Characterization of rDNAs and tandem repeats in the heterochromatin of Brasicca rapa. Mol. Cells 19:436-444.
  32. Long, E.O. and I.B. Dawid. 1980. Repeated genes in eukaryotes. Ann. Rev. Biochem. 49:727-764. https://doi.org/10.1146/annurev.bi.49.070180.003455
  33. Maluszynska, J. and J.S. Heslop-Harrison. 1991. Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J. 1:159-166. https://doi.org/10.1111/j.1365-313X.1991.00159.x
  34. Martins, C. and A.P. Wasko. 2004.Organization and evolution of 5S ribosomal DNA in the fish genome, p. 335-363. In: C.R. Williams (ed.). Focus on Genome Research. Nova Science Publishers, Inc. Hauppauge NY.
  35. Martins, C. and P.M. Galetti, Jr. 1999. Chromosomal localization of 5S rDNA genes in Leporinus fish (Anostomidae, Characiformes). Chromosome Res. 7:363-367. https://doi.org/10.1023/A:1009216030316
  36. Mondin, M., J.A. Santos-Serejo, and M.L.R. Aguiar-Perecin. 2007. Karyotype characterization of Crotalaria juncea (L.) by chromosome banding and physical mapping of 18S-5.8S-26S and 5S rRNA gene sites. Genet. Mol. Biol. 30:65-72. https://doi.org/10.1590/S1415-47572007000100013
  37. Ng, T.J. 1993. New opportunities in the Cucurbitaceae, p. 538-546. In: J. Janick and J.E. Simon (eds.). New Crops. Wiley, New York.
  38. Ohmido, N., K. Fukui, and T. Kinoshita. 2010. Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). Proc. Jpn. Acad., Ser. B 86:103-116. https://doi.org/10.2183/pjab.86.103
  39. Ramachandran, C. and R.K.J. Narayan. .1990. Satellite DNA specific to knob heterochromatin in Cucumis metuliferus (Cucurbitaceae). Genetica 80:129-138. https://doi.org/10.1007/BF00127133
  40. Raskina, O., A. Belyayev, and E. Nevo. 2004. Activity of the En/ Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosome Res. 12:153-161. https://doi.org/10.1023/B:CHRO.0000013168.61359.43
  41. Ren, Y., Z. Zhang, J. Liu, J.E. Staub, Y. Han, Z. Cheng, X. Li, J. Lu, H. Miao, H. Kang, B. Xie, X. Gu, X. Wang, Y. Du, W. Jin, and S. Huang. 2009. An integrated genetic and cytogenetic map of the cucumber genome. PLoS ONE 4:e5795. https://doi.org/10.1371/journal.pone.0005795
  42. Robinson, R.W. and D.S. Decker-Walters. 1999. Cucurbits. CAB International, Wallingford, Oxford, UK.
  43. Roy, V., L. Monti-Dedieu, N. Chaminade, S. Sijak-Yakovlev, S. Aulard, F. Lemeunier, and C. Montchamp-Moreau. 2005. Evolution of the chromosomal location of rDNA genes in two Drosophila species subgroups: Ananassae and melanogaster. Heredity 94:388-395. https://doi.org/10.1038/sj.hdy.6800612
  44. Sadder, M.T. and G. Weber. 2001. Karyotype of maize (Zea mays L.) mitotic metaphase chromosomes as revealed by fluorescence in situ hybridization (FISH) with cytogenetic DNA markers. Plant Mol. Biol. Rep. 19:117-123. https://doi.org/10.1007/BF02772153
  45. Schubert, I. and U. Wobus. 1985. In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma (Berl) 92: 143-148. https://doi.org/10.1007/BF00328466
  46. Scoles, G.J., B.S. Gill, Z.Y. Xin, B.C. Clarke, C.L. Mcintyre, C. Chapman, and R. Appels. 1988. Frequent duplication and deletion events in the 5S RNA genes and the associated spacer regions of the Triticeae. Plant Syst. Evol. 160:105-122. https://doi.org/10.1007/BF00936713
  47. Shishido, R., Y. Sano, and K. Fukui. 2000. Ribosomal DNAs: An exception to the conservation of gene order in rice genomes. Mol. Gen. Genet. 263:586-591. https://doi.org/10.1007/s004380051205
  48. Singh, M., R. Kumar, N.S. Nagpure, B. Kushwaha, I. Mani, U.K. Chauhan, and W.S. Lakra. 2009. Population distribution of 45S and 5S rDNA in golden mahseer, Tor putitora: Population-specific FISH marker. J. Genet. 88:315-320. https://doi.org/10.1007/s12041-009-0045-7
  49. Sultana, S., S.H. Lee, J.W. Bang, and H.W. Choi. 2010. Physical mapping of rRNA gene loci and inter-specific relationships in wild Lilium distributed in Korea. J. Plant Biol. 53:433-443. https://doi.org/10.1007/s12374-010-9133-8
  50. Sumner, A.T. 1990. Chromosome banding. London, Unwin Hyman.
  51. Vasconcelos, S., A.A. Souza, C.L. Gusmao, M. Milani, A.M. Benko-Iseppon, and A.C. Brasileiro-Vidal. 2010. Heterochromatin and rDNA 5S and 45S sites as reliable cytogenetic markers for castor bean (Ricinus communis, Euphorbiaceae). Micron. 41:746-753. https://doi.org/10.1016/j.micron.2010.06.002
  52. Whitaker, T.W. 1933. Cytological and phylogenetic studies in the Cucurbitaceae. Bot. Gaz. 94:780-790. https://doi.org/10.1086/334347
  53. Wiegant, J., T. Ried, P.M. Nederlof, M. van der Ploeg, H.J. Tanke, and A.K. Raap. 1991. In situ hybridization with fluoresceinated DNA. Nucleic Acids Res. 19:3237-3241. https://doi.org/10.1093/nar/19.12.3237
  54. Xu, Y.H., F. Yang, Y.L. Cheng, L. Ma, J.B. Wang, and L.J. Li. 2007. Comparative analysis of rDNA distribution in metaphase chromosomes of Cucurbitaceae species. Hereditas (Beijing) 29: 614-620. https://doi.org/10.1360/yc-007-0614

Cited by

  1. Karyotype analysis of Panax ginseng C.A.Meyer, 1843 (Araliaceae) based on rDNA loci and DAPI band distribution vol.6, pp.4, 2012, https://doi.org/10.3897/compcytogen.v6i4.3740
  2. 정선황기의 세포유전학적 연구 vol.43, pp.2, 2013, https://doi.org/10.11110/kjpt.2013.43.2.139
  3. Dynamics of sex expression and chromosome diversity in Cucurbitaceae: a story in the making vol.94, pp.4, 2015, https://doi.org/10.1007/s12041-015-0562-5
  4. FISH Karyotype Analysis of Four Wild Cucurbitaceae Species Using 5S and 45S rDNA Probes and the Emergence of New Polyploids in Trichosanthes kirilowii Maxim vol.33, pp.6, 2012, https://doi.org/10.7235/hort.2015.15101
  5. A Cytogenetic Study of Three Japanese Cultivars of Momordica charantia L. vol.81, pp.1, 2012, https://doi.org/10.1508/cytologia.81.7
  6. Rapid amplification of four retrotransposon families promoted speciation and genome size expansion in the genus Panax vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-08194-5
  7. Karyomorphological studies of six commercially cultivated edible cucurbits: bitter gourd, sponge gourd, ridge gourd, snake gourd, ash gourd and cucumber vol.71, pp.2, 2018, https://doi.org/10.1080/00087114.2018.1450800
  8. Analysis of Chromosome Composition of Gastrodia elata Blume by Fluorescent in situ Hybridization using rDNA and Telomeric Repeat Probes vol.26, pp.2, 2012, https://doi.org/10.7783/kjmcs.2018.26.2.113
  9. FISH mapping of rDNA and telomeric repeats in 10 Senna species vol.60, pp.2, 2019, https://doi.org/10.1007/s13580-018-0115-y
  10. Pre-labelled oligo probe-FISH karyotype analyses of four Araliaceae species using rDNA and telomeric repeat vol.41, pp.7, 2012, https://doi.org/10.1007/s13258-019-00786-x
  11. Characterization of the Long Terminal Repeat of the Endogenous Retrovirus-derived microRNAs in the Olive Flounder vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-50492-7
  12. rDNA FISH를 이용한 큰조롱과 넓은잎큰조롱의 세포유전학적 연구 vol.28, pp.5, 2020, https://doi.org/10.7783/kjmcs.2020.28.5.325
  13. Identification of 5S and 45S rDNA sites in Chrysanthemum species by using oligonucleotide fluorescence in situ hybridization (Oligo-FISH) vol.48, pp.1, 2012, https://doi.org/10.1007/s11033-020-06102-1
  14. Subgenome Discrimination in Brassica and Raphanus Allopolyploids Using Microsatellites vol.10, pp.9, 2021, https://doi.org/10.3390/cells10092358
  15. Comparative triple-color FISH mapping in eleven Senna species using rDNA and telomeric repeat probes vol.62, pp.6, 2012, https://doi.org/10.1007/s13580-021-00364-9