DOI QR코드

DOI QR Code

Comparisons of Nutritional and Phytochemical Property of Genetically Modified CMV-resistant Red Pepper and Its Parental Cultivar

  • Bhandari, Shiva Ram (Department of Medical Biotechnology, Soonchunhyang University) ;
  • Basnet, Sunita (Department of Medical Biotechnology, Soonchunhyang University) ;
  • Chung, Kyu-Hwan (School of Bioresource and Bioscience, Chung-Ang University) ;
  • Ryu, Ki-Hyun (Department of Horticulture, Seoul Women's University) ;
  • Lee, Young-Sang (Department of Medical Biotechnology, Soonchunhyang University)
  • Received : 2011.09.20
  • Accepted : 2012.02.02
  • Published : 2012.04.30

Abstract

The aim of this study was to compare the nutritional composition of a genetically modified (GM) CMV-resistant red pepper strain with its parental line. Specifically, the nutrient content (moisture, protein, lipid, ash, carbohydrate, and energy), minerals, fatty acid composition, capsaicinoids (capsaicin and dihydrocapsaicin), free sugars (glucose, sucrose, and fructose), vitamin E isomers (${\alpha}$-, ${\beta}$-, ${\gamma}$-, and ${\delta}$-tocopherols), vitamin C, phytosterols (campesterol, stigmasterol, and ${\beta}$-sitosterol), squalene contents, and ASTA values were analyzed and compared. Most of the analyzed compounds showed no significant differences between the GM red peppers and the parental line. The only significant difference was observed in stigmasterol content, but the difference was below the 15% natural-fluctuation threshold. These results suggest that the CMV-GM pepper is equivalent to its parental line in terms of nutritional and phytochemical composition.

Keywords

Acknowledgement

Supported by : Rural Development of Administration

References

  1. Association of Official Agricultural Chemists (AOAC). 2005. Official methods of analysis of AOAC international. 18th ed., AOAC Intl., Gaithersburg, MD, USA.
  2. Bos, L. 1999. Plant viruses, unique and intriguing pathogens-A textbook of plant virology. Backhuys Publishers, Leiden, The Netherlands.
  3. Cai, W.-Q., R-X. Fang, H.-S. Shang, X. Wang, F.-L. Zhang, Y.-R. Li, J.-C. Zhang, X.-Y. Cheng, G.-L. Wang, and K.-Q. Mang. 2003. Development of CMV-and TMV- resistant transgenic chili pepper: Field performance and biosafety assessment. Mol. Breed. 11:25-35. https://doi.org/10.1023/A:1022655204552
  4. Chen, Z.L., H. Gu, Y. Li, Y. Su, P. Wu, Z. Jiang, X. Ming, J. Tian, N. Pan, and L.J. Qu. 2003. Safety assessment of genetically modified sweet pepper and tomato. Toxicology 188:297-307. https://doi.org/10.1016/S0300-483X(03)00111-2
  5. DeWitt, D. and P.W. Bosland. 1993. The pepper garden. Ten Speed Press, Berkeley, CA, USA.
  6. Ewen, S.W.B. and A. Pusztai. 1999. Effect of diets containing genetically modified potatoes expressing Galanthus nivalis lectin on rat small intestine. Lancet 354:1353-1354. https://doi.org/10.1016/S0140-6736(98)05860-7
  7. Food and Agricultural Organization (FAO). 1953. Food composition tables for international use. 2nd ed., FAO, Rome, Italy.
  8. Food and Agricultural Organization/World Health Organization (FAO/WHO). 2000. Safety aspects of genetically modified foods of plant origin. WHO, Geneva, Switzerland.
  9. Frewer, L., J. Lassen, B. Kettlitz, J. Scholderer, V. Beekman, and K.G. Berdal. 2004. Societal aspects of genetically modified foods. Food Chem. Toxicol. 42:1181-1193. https://doi.org/10.1016/j.fct.2004.02.002
  10. Garces-Claver, A., R. Gil-Ortega, A. Alvarez-Fernandez, and M.S. Arnedo-Andres. 2007. Inheritance of capsaicin and dihydrocapsaicin, determined by HPLC-ESI/MS, in an intraspecific cross of Capsicum annuum L. J. Agric. Food Chem. 55:6951-6957. https://doi.org/10.1021/jf070951x
  11. Hashimoto, W., K. Momma, T. Katsube, Y. Ohkawa, T. Ishige, M. Kito, S. Utsumi, and K. Murata. 1999. Safety assessment of genetically engineered potatoes with designed soybean glycinin: Compositional analyses of the potato tubers and digestibility of the newly expressed protein in transgenic potatoes. J. Sci. Food Agric. 79:1607-1612. https://doi.org/10.1002/(SICI)1097-0010(199909)79:12<1607::AID-JSFA408>3.0.CO;2-T
  12. Herman, R.A., N.P. Storer, A.M. Phillips, L.M. Prochaska, and P. Windels. 2007. Compositional assessment of event DAS-59122-7 maize using substantial equivalence. Reg. Toxicol. Pharm. 47:37-47. https://doi.org/10.1016/j.yrtph.2006.08.007
  13. Hothorn, A.L. and R. Oberdoerfer. 2006. Statistical analysis used in the nutritional assessment of novel food using the proof of safety. Reg. Toxicol. Pharm. 44:125-135. https://doi.org/10.1016/j.yrtph.2005.10.001
  14. James, C. 2010. Global status of commercialized biotech/GM crops: 2010. ISAAA Brief No. 42. ISAAA, Ithaca, NY, USA.
  15. Junhua, H., Y. Yuexin, C. Shurong, W. Zhu, Y. Xiaoli, W. Guodong, and M. Jianhua. 2005. Comparison of nutrient composition of parental rice and rice genetically modified with cowpea trypsin inhibitor in China. J. Food Comp. Anal. 18:297-302. https://doi.org/10.1016/j.jfca.2004.11.001
  16. Konig, A., A. Cockburn, R.W.R. Crevel, E. Debruyne, R. Grafstroem, U. Hammerling, I. Kimber, I. Knudsen, H.A. Kuiper, A.A.C.M. Peijnenburg, A.H. Penninks, M. Poulsen, M. Schauzu, and J.M. Wal. 2004. Assessment of the safety of foods derived from genetically modified (GM) crops. Food Chem. Toxicol. 42:1047-1088. https://doi.org/10.1016/j.fct.2004.02.019
  17. Kuiper, H.A, G.A. Kleter, H.P.J.M. Noteborn, and E.J. Kok. 2001. Assessment of the food safety issues related to genetically modified foods. Plant J. 27:503-528. https://doi.org/10.1046/j.1365-313X.2001.01119.x
  18. Lee, S.H., H.J. Park, S.M. Cho, H.K. Chun, D.H. Kim, T.H. Ryu, and M.C. Cho. 2004. Comparison of major nutrients and mineral contents in genetically modified herbicide-tolerant red pepper and its parental cultivars. Food Sci. Biotechnol. 13:830-833.
  19. Lee, Y.H., M. Jung, S.H. Shin, J.H. Lee, S.H. Choi, N.H. Her, J.H. Lee, K.H. Ryu, K.Y. Paek, and C.H. Harn. 2009. Transgenic peppers that are highly tolerant to a new CMV pathotype. Plant Cell Rep. 28:223-232. https://doi.org/10.1007/s00299-008-0637-3
  20. Momma, K., W. Hashimoto, S. Ozawa, S. Kawai, T. Katsube, F. Takaiwa, M. Kito, S. Utsumi, and K. Murata. 1999. Quality and safety evaluation of genetically engineered rice with soyabean glycinin: Analysis of the grain composition and digestibility of glycinin in transgenic rice. Biosci. Biotechnol. Biochem. 63:314-318. https://doi.org/10.1271/bbb.63.314
  21. Nordic Council of Ministers. 1998. Safety assessment of novel food plants: chemical analytical approaches to the establishment of substantial equivalence. Nordic Council of Ministers, Copenhagen, Denmark.
  22. Nordlee, J.A., S.L. Taylor, J.A. Townsend, L.A. Thomas, and R.K. Bush. 1996. Identification of Brazil-nut allergen in transgenic soybeans. N. Engl. J. Med. 334:688-692. https://doi.org/10.1056/NEJM199603143341103
  23. Organization for Economic Cooperation and Development (OECD). 1993. Safety evaluation of foods derived by modern biotechnology: concepts and principles. OECD, Paris, France.
  24. Padgette, S.R., N.B. Taylor, D.L. Nida, M.R. Bailey, J. MacDonald, L.R. Holden, and R.L. Fuchs. 1996. The composition of glyphosate-tolerant soybean seeds is equivalent that of conventional soybeans. J. Nutr. 126:702-716. https://doi.org/10.1093/jn/126.3.702
  25. Palukaitis, P., M.J. Roosinck, R.G. Dietzgen, and R.I.B. Francki. 1992. Cucumber mosaic virus. Adv. Virus Res. 41:281-348.
  26. Park, H., S. Lee, H. Jeong, S. Cho, H. Chun, O. Back, D. Kim, and H.S. Lillehoj. 2006. The nutrient composition of the herbicide-tolerant green pepper is equivalent to that of the conventional green pepper. Nutr. Res. 26:546-548. https://doi.org/10.1016/j.nutres.2006.09.001
  27. Park, K.Y., C.S. Kang, Y.S. Lee, Y.H. Lee, and Y.S. Lee. 2004. Tocotrienol and tocopherol content in various plant seeds. Korean J. Crop Sci. 49:207-210.
  28. Ridley, W.P., G.G. Harrigan, M.L. Breeze, M.A. Nemeth, R.S. Sidhu, and K.C. Glenn. 2011. Evaluation of compositional equivalence for multitrait biotechnology crops. J. Agric. Food Chem. 59:5865-5876. https://doi.org/10.1021/jf103874t
  29. Sherf, A.F. and A.A. McNab. 1986. Cucumber mosaic virus, p. 354-365. In: A.F. Sherf and A.A. McNab (eds.). Vegetable diseases and their control. John Wiley, New York, USA.
  30. Taylor, N.B., R.L. Fuchs, J. MacDonald, A.R. Shariff, and S.R. Padgette. 1999. Compositional analysis of glyphosate-tolerant soybeans treated with glyphosate. J. Agric. Food Chem. 47:4469-4473. https://doi.org/10.1021/jf990056g
  31. Venneria, E., S. Fanasca, G. Monastra, E. Finotti, R. Ambra, E. Azzini, A. Durazzo, M.S. Foddai, and G. Maiani. 2008. Assessment of nutritional values of genetically modified wheat, corn and tomato crops. J. Agric. Food Chem. 56:9206-9214. https://doi.org/10.1021/jf8010992

Cited by

  1. Characterization of Lipophilic Nutraceutical Compounds in Seeds and Leaves of Perilla frutescens vol.31, pp.2, 2013, https://doi.org/10.7235/hort.2013.12177
  2. The Contents of Phytosterols, Squalene, and Vitamin E and the Composition of Fatty Acids of Korean Landrace Setaria italica and Sorghum bicolar Seeds vol.26, pp.6, 2012, https://doi.org/10.7732/kjpr.2013.26.6.663
  3. Seasonal variation in fatty acid composition in various parts of broccoli cultivars vol.40, pp.4, 2013, https://doi.org/10.7744/cnujas.2013.40.4.289
  4. Natural variations in OsγTMT contribute to diversity of the α-tocopherol content in rice vol.290, pp.6, 2015, https://doi.org/10.1007/s00438-015-1059-x
  5. Chemical Composition and Antioxidant Activity in Different Tissues of Brassica Vegetables vol.20, pp.1, 2012, https://doi.org/10.3390/molecules20011228
  6. Seasonal Variation in Contents of Sugars in Different Parts of Broccoli vol.33, pp.2, 2012, https://doi.org/10.7235/hort.2015.14158
  7. Variations in proximate nutrients, phytochemicals, and antioxidant activity of field-cultivated red pepper fruits at different harvest times vol.57, pp.5, 2012, https://doi.org/10.1007/s13580-016-1008-6
  8. Genome-Wide Association Study for Squalene Contents and Functional Haplotype Analysis in Rice vol.4, pp.21, 2019, https://doi.org/10.1021/acsomega.9b02754