A Narrow Band MILES Detection System With Reduced Blind Angle of Detection Using Refractors

굴절체를 이용하여 감지 사각 문제를 개선한 협대역 마일즈 감지 시스템

  • 기현철 (가천대학교 전자공학과)
  • Received : 2012.04.27
  • Accepted : 2012.06.07
  • Published : 2012.07.25

Abstract

In this paper, we tried to realize a next generation MILES detection system which is robust to optical noise using a narrow band interference optical filter. Applying a narrow band interference optical filter which has the wavelength range of 895~915nm to the LASER wavelength of 900nm, we could obtain detection characteristics robust to strong optical noise which can be occurred in street battles. However, the MILES detection system has the blind range of detection in the incident angle range of $30^{\circ}{\sim}90^{\circ}$. To solve this problem we proposed a method of incident angle scatter using refractors. Applying a concave meniscus lens refractor which has diopter of 5.4 to the MILES detection system, we could eliminate the blind angle of detection.

본 논문에서는 협대역 간섭 광학 필터(narrow band interference optical filter)를 적용하여 광학적 잡음에 내성이 강한 차세대용 마일즈 감지 시스템을 구현하고자 시도하였다. 900nm의 레이저 파장에 대해 파장범위(wavelength range) 895~915nm의 협대역 간섭 광학 필터를 적용한 결과 시가전 상황에서 발생할 수 있는 강한 광학적 잡음에 내성을 갖는 감지 특성을 얻을 수 있었다. 그러나 청색천이(blue shift) 현상에 의해 마일즈 감지 시스템에 입사각 $30^{\circ}{\sim}90^{\circ}$ 구간에 감지 사각 영역이 발생하였다. 이 문제를 해결하기위해 굴절체를 이용한 입사각 산란 방법을 제안하였고, 디옵터 5.4의 오목 메니스커스 렌즈 굴절체(concave meniscus lens refractor)를 마일즈 감지 시스템에 적용하여 입사각을 산란시킨 결과 감지 사각을 없앨 수 있었다.

Keywords

References

  1. J.L. Matire, B.B. Jacobs, and W.S. Peostri, "Joint Service Partnership: Extending the Live Training Transformation Product Line" Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), Paper No. 9083, 2009.
  2. W.J. Zable, W.W. Boyle, and M.A. Harrison, "Management's Discussion and Analysis of Financial Condition & Results of Operations" Cubic Corporation 2010 Annual Report, December 8, 2010.
  3. N.J. Diaz, "Annual Status Report on the Results of the Security Inspection Program Conducted by the United States Nuclear Regulatory Commission" 2005.
  4. S.J. Yee, S. Chun, J. Kim, and C .Lee, "Interference Analysis of 2.4 GHz RF Transceivers Using ZigBee Standard in Multiple Integrated Laser Engagement System (MILES)", Proceedings of Asia-Pacific Microwave Conference, 2007.
  5. W. Jang, T.W. Beom, H. Cui, J.R. Park, S.J. Hwang, Y.J. Lim, and S.H. Lee, "Reduction of Viewing-Angle Dependent Color Shift in a Reflective Type Cholesteric Liquid Crystal Color Filter", The Japan Society of Applied Physics, pp.032001(1-3), 2008.
  6. C. Amabile, E. Prati, F. Costa and A. Monorchio, "Effect of The Metal Sheet Thickness on The Frequency Blueshift in Single Layer Compos-ITE Materials at Ka Microwave Frequency", Progress In Electromagnetics Research Letters, Vol. 22, pp.47-58, 2011. https://doi.org/10.2528/PIERC11050405
  7. N. Shen, M. Kafesaki, T. Koschny, L. Zhang, E.N. Economou, and C.M. Soukoulis, "Broadband blueshift tunable metamaterials and dual-band switches", The American Physical Review B Vol. 79, pp.161102(1-4), 2009.
  8. F. Koyma and T. Amano, "Micromachined Tunable Filters Using Stress Control of Multilayer Semiconductor Mirrors", Proceeding of SPIE Vol. 4987, pp.21-28, 2003.