Early Growth and Characteristic of Histological Eye Development in Post Parturition Dark banded Rockfish, Sebastes inermis

볼락, Sebastes inermis 산출 후 초기 성장 및 눈의 조직학적 발달 특성

  • Park, In-Seok (Division of Marine Environment and Bioscience, College of Ocean Science and Technology, Korea Maritime University) ;
  • Park, Hye-Jung (Division of Marine Environment and Bioscience, College of Ocean Science and Technology, Korea Maritime University) ;
  • Gil, Hyun-Woo (Division of Marine Environment and Bioscience, College of Ocean Science and Technology, Korea Maritime University) ;
  • Goo, In-Bon (Division of Marine Environment and Bioscience, College of Ocean Science and Technology, Korea Maritime University)
  • 박인석 (한국해양대학교 해양과학기술대학 해양환경.생명과학부) ;
  • 박혜정 (한국해양대학교 해양과학기술대학 해양환경.생명과학부) ;
  • 길현우 (한국해양대학교 해양과학기술대학 해양환경.생명과학부) ;
  • 구인본 (한국해양대학교 해양과학기술대학 해양환경.생명과학부)
  • Received : 2012.02.29
  • Accepted : 2012.05.21
  • Published : 2012.06.30

Abstract

Importance of behavior factors or environmental factors in visual organization and visual function of fish is treated with great care in visual ecology, and there is no study about initial ocular growth and development on the dark banded rockfish, Sebastes inermis. Thus, this study was performed. The total length, head length, head depth, eye diameter and lens diameter of the dark banded rockfish showed positive allometric relationship between parturition stage and 60 days post-parturition (dpp). The increase in total length relative to head length and head depth, head length growth relative to eye diameter and lens diameter, and head depth growth relative to eye and lens diameter were nearly isometric. The eyes were formed completely at parturtion stage. At this age, the eye has an optic nerve fiber layer, a ganglion cell layer, an inner plexiform layer, an inner nuclear layer, an outer plexiform layer, an outer nuclear layer, an outer limiting membrane, a rod and cone layer and an epithelial layer. Thickness of retina at 60 dpp was higher than that of at parturition stage. During this experiment, the proportion of the rod and cone layer, outer nuclear layer, and optic nerve fiber layer of retina were significantly increased, while the proportion of the outer plexiform layer, inner nuclear layer and ganglion cell layer of retina were significantly decreased (P<0.05). The essential demands that must be met by the retina in this species pertain to light sensitivity and spatial resolution.

어류의 시각 구조와 시각 기능 연구에 있어서 행동적 요인이나 환경적 요인의 중요성은 시각생태학에서 매우 중요하게 다루어지고 있으며, 볼락, Sebastes inermis에 관하여는 아직까지 초기 눈의 성장 및 발달에 관한 발생생물학적 연구가 이루어진 바가 없음을 고려하여 이에 대한 연구를 수행하였다. 볼락의 전장, 두장, 두고, 눈의 직경과 수정체 직경은 산출 직후부터 산출 후 60일까지의 단계에서 양성의 상관관계(positive allometry)를 보여주었다. 전장과 관련된 두장과 두고에서의 증가와, 두고와 관련된 눈의 직경과 수정체 직경의 성장은 거의 동형(isometric)성장을 나타내었다. 눈은 산출단계에 완전히 형성되었다. 산출 단계의 눈은 시신경 섬유층, 신경절 세포층, 내망상층, 내과립층, 외망상층, 외과립층, 외경계막, 간체, 추체층 및 상피층을 가지며, 산출 후 60일의 망막 두께는 산출 직후의 망막 두께보다 더 크다. 본 실험기간 동안, 망막의 간체와 추체층의 비율 및 외과립층과 시신경의 비율은 상당히 증가한 반면, 망막의 외망상층과 내과립층, 신경절 세포층의 비율은 현저하게 감소하였다(P<0.05). 차후, 본 연구에 사용된 볼락 망막에 대한 빛 민감성과 공간 해상력에 관한 부수 연구가 필요하리라 사료된다.

Keywords

References

  1. Choi HJ, Oh SY, Noh CH, Park YJ, Myoung JG, Kim JM, Hur JW, Kim DS, Park IS (2007) Sex differentiation and early gonadogenesis in Sebastes inermis Cuvier. Ocean Polar Res 30:401-406.
  2. Choi Y, Kim JH, Park JY (2002) Marine Fishes of Korea. Kyo-Hak Publishing Co, Seoul, pp82-86.
  3. Chyung MK (1977) The Fishes of Korea. Il-Ji Sa Publishing Co, Seoul, pp107-108.
  4. Kang DY, Hong KP, Noh CH, Oh SU, Min BH (2003) Differentiation and development of thyroid gland during early development of larval rockfish, Sebastes inermis. Korean J Ichthyol 15:241-247.
  5. Kim KS, Han KH, Lee JH, Lee SH, Kim CC, Ko HJ, Jeong KS (2007) Egg development and morphology of larva and juvenile of the konoshiro gizzard shad, Konosirus punctatus. Dev Reprod 11:127-135.
  6. Kim YU, Han KH (1993) The early life history of the rockfish, Sevastes inermis. 1. Egg development and morphology of larvae by artificial treatment in aquarium. Bull Kor Fish Soc 26:458-464.
  7. Kim YU, Han KH, Byun SK (1993) The early life history of the rockfish, Sebastes inermis. 2. Morphological and skeletal development of larvae and juveniles. Bull Kor Fish Soc 26:465-476.
  8. Lee TY, Kim SY (1992) Reproduction and embryonic development within the maternal body of ovoviviparous teleost, Sevastes inermis. Bull Kor Fish Soc 25:413-431.
  9. Lythgoe JN (1979) The Ecology of Vision. Clarendon Press, Oxford, pp1-261.
  10. Mio S (1960) Studies on population biology of coastal fishes in Kyushu. I. Biology of Sebastes inermis (Cuvier et Valencinnes). Oceanogr Works Japan 5:419-436.
  11. Mizue K (1958) Studies on a scorpaenous fish Sebastiscus marmoratus (Cuvier et Valenciennes). II The seasonal cycle of mature testis and the spermatogenesis. Bull Fac Fish Nagasaki Univ 6:27-38.
  12. Park IS, Im SY, Hur JW, Jeong GS (2006a) Early growth and development of eye in dotted gizzard shad, Konosirus punctatus. Dev Reprod 10:93-96.
  13. Park IS, Kim DS (2000) Comparison of some tissues in diploid and triploid hybrid between mud loach, Misgurnus mizolepis and cyprinid loach, M. anguillicaudatus. Dev Reprod 4:19-28.
  14. Park IS, Lee JW, Hur JW, Song YC, Na HC, Noh CH (2007) Acute toxicity and sublethal effects of nitrite on selected hematological parameters and tissues in darkbanded rockfish, Sebastes inermis. J World Aquacult Soc 38:188-199. https://doi.org/10.1111/j.1749-7345.2007.00088.x
  15. Park IS, Seol DW, Cho SH, Song YC, Choi HJ, Noh CH, Myoung JG, Kim JM (2006b) Morphogenesis of the eye of brown croaker (Miichthys miiuy). Ocean Polar Res 28:287-290. https://doi.org/10.4217/OPR.2006.28.3.287
  16. Rodriguez A, Gisbert E (2001) Morphogenesis of the eye of Siberian sturgeon. J Fish Biol 59:1427-1429. https://doi.org/10.1111/j.1095-8649.2001.tb00206.x
  17. Shinomiya A, Ezaki O (1991) Mating habits of the rocfish, Sebastes inermis. Environ Bio Fish 30:15-22. https://doi.org/10.1007/BF02296872
  18. Wagner HJ (1973) Darkness-induced reduction of the number of synaptic ribbons in fish retine. Nature New Biol 246:53-55.
  19. Wagner HJ (1980) Light dependent plasticity of the morphology of horizontal cell terminals in cone pedicles of fish retinas. J Neurocytol 9:573-590. https://doi.org/10.1007/BF01205026
  20. Wagner HJ (1990) Retinal stucture of fishes. In: The Visual System of Fish. Douglas R. and M. Diamgoz, eds. Chapman and Hall, London, pp109-157.
  21. Wagner HJ, Dougals RH (1983) Morphologic changes in teleost primary and secondary retinal cells following brief exposure to light. Invest Ophthalmol Vis Sci 24:24-29.
  22. Walls GL (1942) The Vertebrate Eye and Its Adaptive Radiation. Facsimile edition, Hafner Publishing Co, New York, pp1-302.
  23. Zheng LI, Lancy M, Joseph NM, Stephen S (2000) The Morphogenesis of the zebrafish eye, including a fate map of the optic vesicle. Dev Dynamics 218:175-188. https://doi.org/10.1002/(SICI)1097-0177(200005)218:1<175::AID-DVDY15>3.0.CO;2-K