Foodweb of Aquatic Ecosystem within the Tamjin River through the Determination of Carbon and Nitrogen Stable Isotope Ratios

탄소 및 질소 안정동위원소비를 이용한 탐진강 수생태계 먹이망 연구

  • Gal, Jong-Ku (Department of Environmental Marine Sciences, Hanyang University) ;
  • Kim, Min-Seob (Department of Environmental Marine Sciences, Hanyang University) ;
  • Lee, Yeon-Jung (Department of Environmental Marine Sciences, Hanyang University) ;
  • Seo, Jin-Won (Department of Biological & Agricultural Engineering, University of Idaho) ;
  • Shin, Kyung-Hoon (Department of Environmental Marine Sciences, Hanyang University)
  • Received : 2012.05.09
  • Accepted : 2012.06.12
  • Published : 2012.06.30

Abstract

To investigate foodweb of aquatic ecosystem in the Tamjin River, carbon and nitrogen stable isotopes ratios of aquatic organisms, as well as environmental indicators based on the water, were determined in this study. Various organisms such as fishes (Coreoperca kawamebari, Zacco platypus, Cobitis lutheri, and Pungtungia herzi) and periphyton (epilithon and epiphyte), and particulate- and coarse particulate organic matters (POM and CPOM) were collected in upper (Tamjin River, Yuchi Stream, and Omcheon Stream) and lower (TJ-1~TJ-5) reaches of Jangheung Dam. The nitrate concentration and ${\delta}^{15}N$ signature of POM and organisms (invertebrates and fish) were found to be more enriched toward the downstream section of the river. It was determined that allochthonous matter occurring from a tributary alters the chemical character of water, as well as the isotopic signature of organisms contained therein. Attached algae (ephilithon) were identified as a base component of the benthic foodchain further downstream.

본 연구는 탄소 및 질소 안정동위원소비를 이용하여 하천에서 환경변화의 지표로 활용할 수 있는 부착조류의 먹이원으로서 기여도를 파악하고자 하였다. 연구지역인 탐진강은 지류를 통해 유입되는 외래기원물질의 영향으로 상류에서 하류로 갈수록 높은 영양염의 농도를 나타냈으며 이와 더불어 상위섭식자인 어류의 질소 안정동위원소비의 증가가 관찰되었다. 또한 탐진강에서 채집된 저서성대형무척추동물과 어류의 ${\delta}^{13}C$ 값이 상류에서 하류로 이동하면서 무거워지는 경향을 나타내었다. 이는 탐진강 하류 수역에서 무거운 ${\delta}^{13}C$ 값을 보였던 암석 부착조류가 먹이원으로서의 기여도가 높아진 결과로 판단된다.

Keywords

References

  1. APHA. 2005. Standard methods for the examination of water and waste water. American Public Health Association, New York.
  2. Battin, T.J., L.A. Kaplan, J.D. Newbold and C.M.E. Hansen. 2003. Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426: 439-442. https://doi.org/10.1038/nature02152
  3. Caraco, N.F. and J.J. Cole. 1999. Human impact on nitrate export: an analysis using major world rivers. Ambio. A Journal of the Human Environment 28: 167-170.
  4. Chessman, B.C., D.P. Westhorpe, S.M. Mitrovic and L. Hardwick. 2009. Trophic linkages between periphyton and grazing macroinvertebrates in rivers with different levels of catchment development. Hydrobiologia 625: 135-150. https://doi.org/10.1007/s10750-009-9702-3
  5. Clement, J.C., R.M. Holnes, B.J. Peterson and G. Pinay. 2003. Isotopic investigation of denitrification in a riparian ecosystem in western France. Journal of Applied Ecology 40: 1035-1048. https://doi.org/10.1111/j.1365-2664.2003.00854.x
  6. Costerton, J.W., Z. Lewandowski, D.E. Caldwell, D.R. Korber and H.M. Lappin-Scott. 1995. Microbial biofilms. Annual Review Microbiology 49: 711-745. https://doi.org/10.1146/annurev.mi.49.100195.003431
  7. Doi, H., E. Kikuchi, S. Hino, T. Itoh, S. Takagi and S. Shikano. 2003. Seasonal dynamics of carbon stable isotope ratios of particulate organic matter and benthic diatoms in strongly acidic Lake Katanuma. Aquatic Microbial Ecology 33: 87-94.
  8. Doi, H., M. Matsumasa, T. Toya, N. Satoh, C. Mizota, Y. Maki and E. Kikuchi. 2005. Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem: Carbon and nitrogen stable isotope analyses. Estuarine, Coastal and Shelf Science 64: 316-322. https://doi.org/10.1016/j.ecss.2005.02.028
  9. Eriksson, P.G. 2001. Interaction effects of flow velocity and oxygen metabolism on nitrification and denitrification in biofilms on submersed macrophytes. Biogeochemistry 55: 29-44. https://doi.org/10.1023/A:1010679306361
  10. Ertl, M. and J. Tomajka. 1973. Primary production of the periphyton in the littoral of the Danube. Hydrobiologia 42(4): 429-444. https://doi.org/10.1007/BF00047018
  11. Flipo, N., C. Rabouille, M. Poulin, S. Even, M.T. Vuillemin and M. Lalande. 2007. Primary production in headwater streams of the Seine basin: The Grand Morin river case study. Science of the Total Environment 375: 98-109. https://doi.org/10.1016/j.scitotenv.2006.12.015
  12. Fogg, G.E., D.E. Rolston, D.L. Decker, D.T. Louie and M.E. Grismer. 1998. Spatial variation in nitrogen isotope values beneath nitrate contamination sources. Ground Water 36(3): 418-426. https://doi.org/10.1111/j.1745-6584.1998.tb02812.x
  13. Fry, B. 1991. Stable isotope diagrams of freshwater food webs. Ecology 72(6): 2293-2297. https://doi.org/10.2307/1941580
  14. Fry, B. and S.C. Wainright. 1991. Diatom sources of 13C-rich carbon in marine food webs. Marine Ecology Progress Series 76: 149-157.
  15. Fukumori, K., M. Oi, H. Doi, D. Takahashi, N. Okuda, T.W. Miller, M. Kuwae, H. Miyasaka, M.G. Kato, Y. Koizumi and K. Omori, H. Takeoka. 2008. Bivalve tissue as a carbon and nitrogen isotope baseline indicator in coastal ecosystems. Estuarine, Coastal and Shelf Science 79: 45- 50. https://doi.org/10.1016/j.ecss.2008.03.004
  16. Gaiser, E. 2009. Periphyton as an indicator of restoration in the Florida Everglades. Ecological Indicators 9: 37- 45. https://doi.org/10.1016/j.ecolind.2008.08.004
  17. Hansson, S., J.E. Hobbie, R. Elmgren, U. Larsson, B. Fry and S. Johansson. 1997. The stable nitrogen isotope ratio as a marker of food-web interaction and fish migration. Ecology 78(7): 2249-2257. https://doi.org/10.1890/0012-9658(1997)078[2249:TSNIRA]2.0.CO;2
  18. Hebert, C.E., M.T. Arts and D.V. Chip Weseloh. 2006. Ecological tracers can quantify food Web structure and change. Environmental Science 40(18): 5618-5623. https://doi.org/10.1021/es0520619
  19. Hillebrand, H. 2008. Grazing regulates the spatial variability of periphyton biomass. Ecology 89(1): 165-173. https://doi.org/10.1890/06-1910.1
  20. Hoffman, J.C. and D.A. Bronk. 2006. Interannual variation in stable carbon and nitrogen isotope biogeochemistry of the Mattaponi River, Virginia. Limnology and Oceanography 51(5): 2319-2332. https://doi.org/10.4319/lo.2006.51.5.2319
  21. Kang, C.K., J.B. Kim, K.S. Lee, J.B. Kim, P.Y. Lee and J.S. Hong. 2003. Trophic importance of benthic microalgae to macrozoobenthos in coastal bay systems in Korea: dual stable C and N isotope analyses. Marine Ecology Progress Series 259: 79-92.
  22. Kendall, C., S.R. Silva and V.J. Kelly. 2001. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States. Hydrological Processes 15: 1301-1346. https://doi.org/10.1002/hyp.216
  23. Kitting, C.L., B. Fry and M.D. Morgan. 1984. Detection of inconspicuous epiphytic algae supporting food webs in seagrass meadows. Oecologia 62: 145-149. https://doi.org/10.1007/BF00379006
  24. Lesniak, P.M. and H. Sakai. 1989. Carbon isotope fractionation between dissolved carbonate ($CO_{3}^{2-}$) and $CO_{2}$ (g) at ${25^{\circ}C}$ and ${40^{\circ}C}$. Earth and Planetary Science Letters 95: 297-301. https://doi.org/10.1016/0012-821X(89)90104-0
  25. Lock, M.A. and T.E. Ford. 1985. Microcalorimetric approach to determine relationships between energy supply and metabolism in river epilithon. Applied and Environmental Microbiology 49(2): 408-412.
  26. Lund, L.J., A.J. Horne and A.E. Williams. 2000. Estimating denitrification in a large constructed wetland using sta-ble nitrogen isotope ratios. Ecological Engineering 14: 67-76.
  27. McClelland, J.W. and I. Valiela. 1997. Nitrogen-stable isotope signatures in estuarine food webs: A record of increasing urbanization in coastal watersheds. Limnology and Oceanography 42(5): 930-937. https://doi.org/10.4319/lo.1997.42.5.0930
  28. McCutchan, J.H. Jr, W.M. Lewis Jr, C. Kendall and C.C. McGrath. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378-390. https://doi.org/10.1034/j.1600-0706.2003.12098.x
  29. Minagawa, M. and E. Wada. 1984. Stepwise enrichment of $^{15}$N along food chains: Further evidence and the relation between $\delta^{15}$N and animal age. Geochimica et Cosmochimica Acta 48: 1135-1140. https://doi.org/10.1016/0016-7037(84)90204-7
  30. Palmer, R.J. Jr and D.C. White. 1997. Developmental biology of biofilms: implications for treatment and control. Trends in Microbiology 5(11): 435-440. https://doi.org/10.1016/S0966-842X(97)01142-6
  31. Peterson, B.J. 1999. Stable isotopes as tracers of organic matter input and transfer in benthic food webs: A review. Acta Oecologica 20(4): 497-487.
  32. Post, D.M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83(3): 703-718. https://doi.org/10.1890/0012-9658(2002)083[0703:USITET]2.0.CO;2
  33. Post, D.M., M.L. Pace and N.G. Halrston. 2000. Ecosystem size determines food-chain length in lake. Nature 45(29): 1047-1049.
  34. Singer, G.A., M. Panzenbock, G. Weigelhofer, C. Marchesani, J. Waringer, W. Wanek and T.J. Battin. 2005. Flow history explains temporal and spatial variation of carbon fractionation in stream periphyton. Limnology and Oceanography 50(2): 706-712. https://doi.org/10.4319/lo.2005.50.2.0706
  35. Suzuki, K.W., A. Kasail, T. Ohta, K. Nakayama and M. Tanaka. 2008. Migration of Japanese temperate bass Lateolabrax japonicus juveniles within the Chikugo River estuary revealed by $\delta^{13}$C analysis. Marine Ecology Progress Series 358: 245-256.
  36. Szaran, J. 1998. Carbon isotope fractionation between dissolved and gaseous carbon dioxide. Chemical Geology 150: 331-337. https://doi.org/10.1016/S0009-2541(98)00114-4
  37. Turner, R.E., N.N. Rabalais, D. Justic and Q. Dortch. 2003. Global patterns of dissolved N, P and Si in large rivers. Biogeochemistry 64: 297-317. https://doi.org/10.1023/A:1024960007569
  38. Watanabe, S., M. Kodama and M. Fukuda. 2009. Nitrogen stable isotope ratio in the manila clam, Ruditapes philippinarum, reflects eutrophication levels in tidal flats. Marine Pollution Bulletin 85: 1447-1453.
  39. Yang, J.Y. and K.H. Shin. 2009. Identification of the food sources-metabolism of the pacific oyster Crassostrea gigas using carbon and nitrogen stable isotopic ratios. Korean Journal of Environmental Biology 27(3): 279- 284.
  40. Yun, S.G., B.S. Yoon, D.G. Paik and C.K. Kang. 2006. The origin of organic matters utilized by soft bottom macrozoobenthos in Tongyeong. Journal of Korea Fishery Society 39(Special Issue): 189-197.