DOI QR코드

DOI QR Code

Evaluation of Heavy Metal Contents in Mudflat Solar Salt, Salt Water, and Sea Water in the Nationwide Salt Pan

전국 염전에서 생산된 갯벌천일염, 함수 및 해수의 중금속 함량 평가

  • Kim, Hag-Lyeol (Dept. of Food Engineering, Solar Salt & Halophyte R&D Center, Mokpo National University) ;
  • Yoo, Young-Joo (Dept. of Food Engineering, Solar Salt & Halophyte R&D Center, Mokpo National University) ;
  • Lee, In-Sun (Dept. of Food Engineering, Solar Salt & Halophyte R&D Center, Mokpo National University) ;
  • Ko, Gang-Hee (Dept. of Food Engineering, Solar Salt & Halophyte R&D Center, Mokpo National University) ;
  • Kim, In-Cheol (Dept. of Food Engineering, Solar Salt & Halophyte R&D Center, Mokpo National University)
  • 김학렬 (국립목포대학교 공과대학 식품공학과/천일염 및 염생식물 산업화 사업단) ;
  • 유영주 (국립목포대학교 공과대학 식품공학과/천일염 및 염생식물 산업화 사업단) ;
  • 이인선 (국립목포대학교 공과대학 식품공학과/천일염 및 염생식물 산업화 사업단) ;
  • 고강희 (국립목포대학교 공과대학 식품공학과/천일염 및 염생식물 산업화 사업단) ;
  • 김인철 (국립목포대학교 공과대학 식품공학과/천일염 및 염생식물 산업화 사업단)
  • Received : 2012.03.13
  • Accepted : 2012.07.03
  • Published : 2012.07.31

Abstract

This study was conducted to evaluate the heavy metal contents of mudflat solar salt, salt water, and sea water produced in the nationwide salt pan. In mudflat solar salt, moisture contents were significantly different (p<0.001) between regions, ranging from 7.357% to 14.862%. Arsenic (As) content ranged from 0.007 ppm to 0.497 ppm, cadmium (Cd) from 0.000 ppm to 0.101 ppm, plumbum (Pb) from 0.000 ppm to 0.191 ppm, hydrargyrum (Hg) from 0.006 ppb to 0.180 ppb, and copper (Cu) from 0.039 ppm to 4.794 ppm between regions, which were significantly different (p<0.001). Further, As, Cd, Pb, and Hg contents of sea and salt water were not in excess of their criterion points. Our results suggest that heavy metal contents of mudflat solar salt, salt water, and sea water produced in the nationwide salt pan were at safe levels. However, continuous management of heavy metal contamination, such as PVC met, is still necessary.

전국 염전에서 생산된 갯벌천일염의 수분함량과 함수 및 염전 저수지 해수에 포함된 중금속(수은, 납, 카드뮴, 비소, 구리) 함량을 평가하였으며, 생산지역에 따른 갯벌천일염의 중금속 함량 차이를 비교 분석하였다. 갯벌천일염의 수분함량은 7.357%에서 14.862% 범위였으며, 중금속 함량은 생산지역에 따라 차이가 있었으나, 비소함량은 0.007 ppm에서 0.497 ppm 수준으로 기준치를 초과한 함량은 검출되지 않았으며, 카드뮴은 불검출에서부터 0.101 ppm, 납은 불검출에서부터 0.191 ppm, 수은은 0.006 ppb에서 0.180 ppb 수준으로 기준치를 초과한 시료는 검출되지 않았다. 천일염의 구리함량은 0.039 ppm 수준에서 4.794 ppm 수준의 범위를 나타내었으며, 지역에 따라 다소 높은 수준의 함량이 검출되었다. 염전 저수지 해수에 포함되어 있는 비소함량은 불검출에서 0.474 ppm 수준이었으며, 카드뮴은 불검출에서 0.009 ppm, 납은 0.005 ppm에서 0.038 ppm, 수은은 불검출에서 0.018 ppb, 구리함량은 0.267 ppm 수준에서 3.184 ppm 수준의 범위였다. 전국 염전 함수에 대한 비소함량은 0.012 ppm에서 0.914 ppm, 카드뮴은 불검출에서 0.021 ppm, 납은 0.010 ppm에서 0.094 ppm 수준의 범위였으며, 수은은 불검출에서 0.0221 ppb, 구리함량은 0.372 ppm 수준에서 3.275 ppm 수준을 나타내었으며, 모든 시료에서 기준치를 초과한 함량은 검출되지 않았다. 이상과 같은 결과로부터 전국 염전에서 생산된 천일염, 함수 및 해수에 포함된 중금속 함량은 안전한 수준인 것으로 판단되지만 염전 결정지 바닥재로 사용하고 있는 PVC의 잠재적인 위해성을 감안한다면 이에 대한 지속적인 관리가 절실히 요청된다.

Keywords

References

  1. Baxter International. 1999a. The use of PVC in medical devices. http://www.baxter.com/investors/citizenship/environmental/issues/pvc.html
  2. Baxter International. 1999b. Baxter's position. http://www.baxter.com/investors/citizenship/environmental/issues/position pvc.html
  3. Baxter International. 1999c. The use of DEHP in medical devices. http://www.baxter.com/investor/citizenship/environmental/issues/dehp.html
  4. Hardell L, Ohlson C, Fredrikson M. 1997. Occupational exposure to polyvinyl chloride as a risk factor for testicular cancer evaluated in a case-control study. Int J Cancer 73: 828-830. https://doi.org/10.1002/(SICI)1097-0215(19971210)73:6<828::AID-IJC10>3.0.CO;2-0
  5. Choi H, Kim DP, Nam HJ, Joo MJ, Ko TS. 2008. Report of DEHP in saltfarm. Korea Consumer Agency. http://www.kca.go.kr
  6. Park JW, Kim SJ, Kim SH, Kim BH, Kang SG, Nam SH, Jung ST. 2000. Determination of mineral and heavy metal contents of various salts. Korean J Food Sci Technol 32: 1442-1445.
  7. Shin TS, Park CK, Lee SH, Han KH. 2005. Effects of age on chemical composition in sun-dried salts. Korean J Food Sci Technol 37: 312-317.
  8. Jo EJ, Shin DH. 1998. Study on the chemical compositions of sun-dried, refined and processed salt produced in Chonbuk area. J Fd Hyg Safety 13: 360-364.
  9. Hwang SH. 1988. A study on the heavy metal contents of common salt in Korea. Korean J Environ Hlth Soc 14: 73-86.
  10. Korea Food and Drug Administration. 2008. Food Standards Codex. Korean Food Industry Association, Seoul, Korea.
  11. Ha JO, Park KY. 1998. Composition of mineral contents and external structure of various salts. J Korean Soc Food Sci Nutr 27: 423-418.
  12. Go DG, Kim HM. 2008. Salt story of Guerande. Sigmapress, Seoul, Korea. p 123.
  13. Kim JM, Yoon JH, Ham KS, Kim IC, Kim HL. 2009. Hazards for the sea salt production procedures and its improvement. Safe Food 4: 8-13.

Cited by

  1. Effects of Various Kinds of Salt on the Quality and Storage Characteristics of Tteokgalbi vol.34, pp.5, 2014, https://doi.org/10.5851/kosfa.2014.34.5.604
  2. Physicochemical Properties and Microbial Analysis of Korean Solar Salt and Flower of Salt vol.42, pp.7, 2013, https://doi.org/10.3746/jkfn.2013.42.7.1115
  3. Physicochemical Quality Properties of Mudflat Solar Salt and Roasted Salt vol.43, pp.7, 2014, https://doi.org/10.3746/jkfn.2014.43.7.1048
  4. Evaluation of mineral, heavy metal and phthalate contents in mudflat solar salt and foreign salt vol.21, pp.4, 2014, https://doi.org/10.11002/kjfp.2014.21.4.520
  5. Comprehensive analysis to determine the differences of solar salt produced in South Korea and China vol.29, pp.3, 2012, https://doi.org/10.1007/s10068-019-00664-y