DOI QR코드

DOI QR Code

A Comparative Analysis on Slope Stability Using Specific Catchment Area Calculation

비 집수면적 산정기법에 따른 사면 안정성 비교·분석

  • Lee, Gi-Ha (Land, Transport and Maritime Affairs Team, National Assembly Research Service) ;
  • Oh, Sung-Ryul (Dept. of Civil Eng., Chungnam National Univ.) ;
  • An, Hyun-Uk (Numerical Program Team, Division of Computational Sciences in Mathematics, National Institute for Mathematical Sciences) ;
  • Jung, Kwan-Sue (Dept. of Civil Engrg., Chungnam National Univ.)
  • 이기하 (국회입법조사처 경제산업조사실 국토해양팀) ;
  • 오성렬 (충남대학교 공과대학 토목공학과) ;
  • 안현욱 (국가수리과학연구소 계산수리과학연구부 수치프로그램연구팀) ;
  • 정관수 (충남대학교 공과대학 토목공학과)
  • Received : 2012.03.06
  • Accepted : 2012.04.18
  • Published : 2012.07.31

Abstract

There has been an increase for the landslide areas and restoration expenses due, in large part, to the increased locally heavy rains caused by recent climate change as well as the reckless development. This study carried out a slope stability analysis by the application of distributed wetness index, using the GIS-based infinite slope stability model, which took the root cohesion effect into consideration, for part of Mt. Umyeon in Seoul, where landslide occurred in July 2011, in order to compensate the defects of existing analysis method, and subsequently compared its result with the case on the exploitation of lumped wetness index. In addition, this study estimated the distributed wetness index by methodology, applying three methods of specific catchment area calculation: single flow direction (SFD), multiple flow direction (MFD), and infinity flow direction (IFD), for catchment area, one of the variables of distributed wetness indices, and finally implemented a series of comparative analysis for slope stability by methodology. The simulation results showed that most unstable areas within the study site were dominantly located in cutting-area surroundings along with the residential area and the mountaintop and unstable areas of IFD and lumped wetness index method were similar while SFD and MFD provided smaller unstable areas than the two former methods.

최근 기후변화에 따른 집중호우의 증가 및 무분별한 유역개발에 의한 산사태 발생빈도 및 재해복구비용이 증가하고 있는 추세이다. 본 연구에서는 2011년 7월에 발생한 서울시 우면산 지역을 대상으로 뿌리 점착력을 고려한 GIS기반의 무한사면안정모형을 이용하여 사면안정해석을 수행하였다. 무한사면안정모형의 중요 매개변수인 습윤지수의 공간분포화를 위해 비 집수면적 개념을 도입하였으며, 세가지 기법(일방향 흐름기법, 다방향 흐름기법, 무한방향 흐름기법)를 이용하여 비 집수면적을 산정하고, 각 기법에 따른 대상유역내의 격자별 사면안전율의 변화양상을 분석하였다. 또한, 기존의 무한사면안정모형을 이용한 사면안정 해석에 일반적으로 적용되고 있는 공간집중형 습윤지수 결과와의 비교를 통하여 우면산 지역의 사면안정 해석의 차이점을 비교 분석하였다. 무한사면안정모형을 이용하여 산정된 사면안전율 분석결과, 거주지 주변의 절개지 부근과 산지정상부근의 급경사지에서 불안정 지역이 집중적으로 분포하고 있음을 확인하였으며, IFD와 집중형 습윤지수에 의한 불안정지역은 유사하게 나타난 반면, SFD와 MFD에 의한 불안정지역은 앞선 두 가지기법에 비해 작게 산정되었다.

Keywords

References

  1. 김민구 (2005). 뿌리보강모델을 활용한 GIS 산사태 위험도 작성방법연구. 석사학위논문, 성균관대학교.
  2. 김청환 (2011). 우면산 산사태 복구보고서도 부실덩어리. 한국일보.
  3. 박덕근, 오정림, 박정훈 (2006). "우리나라 지반재해와 방재정책." 대한지질공학회 심포지움 논문집, 대한지질공학회, pp. 185-189.
  4. 산림청 (2005). 산사태위험지관리시스템 매뉴얼.
  5. 소방방재청 (2009). 산사태재해 예측 및 저감기술 개발.
  6. 양인태, 천기선, 박재국, 이상윤 (2007). "GIS를 이용한 강우조건에 따른 산사태 취약지 평가." 한국지형공간정보학회지, 한국지형공간정보학회, 제15권, 제1호, pp. 39-46.
  7. 이용준, 박근애, 김성준 (2006). "로지스틱 회귀분석 및 AHP 기법을 이용한 산사태 위험지역 분석." 대한토목학회논문집, 대한토목학회, 제26권 제5D호, pp. 861-867.
  8. 이사로 (1999). 지리정보시스템(GIS)를 이용한 산사태 취약성 분석 기법 개발 및 적용 연구. 박사학위논문, 연세대학교.
  9. 이수곤, 이경수, 김병호 (2008). "절취사면 설계 현황에 대한 연구." 한국방재학회 학술발표회 논문집, 한국방재학회, pp. 569-572.
  10. 오경두, 홍일표, 전병호, 안원식, 이미영 (2006). "GIS 기반 산사태 예측모형의 적용성 평가." 한국수자원학회논문집, 한국수자원학회, 제39권, 제1호, pp. 23-33.
  11. 한지영 (2003) 토양수분 예측을 위한 수치지형 분석과 동역학적 습윤지수의 개발. 석사학위논문, 부산대학교.
  12. Acharya, G., De Smedt, F., and Long, N.T. (2006). "Assessing landslide hazard in GIS: a case study from Rasuwa, Nepal." Bulletin of Engineering Geology and the Environment, Vol. 65, No. 1, pp. 99-107. https://doi.org/10.1007/s10064-005-0025-y
  13. Anderson, M.G., Collison, A.J.C., Hartshorne, J., Lloyd, D.M., and Park, A. (1996). "Developments in slope hydrology-stability modelling for tropical slopes." Advances in Hillslope Processes, Edited by Anderson, M.G and Brooks S.M., Wiley, pp. 799-821.
  14. Baum, R.L., Savage, W.Z., and Godt, J.W. (2002). "TRIGRS-A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis." U.S. Geological Survey, Open-file Report 02-0424, 27p.
  15. Borga, M., Dalla Fontana, G., Da Ros, D., and Marchi, L. (1998). "Shallow landslide hazard assessment using physically based model and digital elevation data." Bulletin of Engineering Geology and the Environment, Vol. 35, pp. 8188. https://doi.org/10.1007/s002540050295
  16. Borga, M., Dalla Fontana, G., and Cazorzi, F. (2002). "Analysis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasidynamic wetness index." Journal of Hydrology, Vol. 268, pp. 56-71. https://doi.org/10.1016/S0022-1694(02)00118-X
  17. Gupta, R.P., and Joshi, B.C. (1989). "Landslide hazard zoning using the GIS approach-a case study from the Ramganga catchment, Himalayas." Engineering Geology, Vol. 28, pp. 119-131.
  18. Montgomery, D.R., and Dietrich, W.E. (1994). "A physically based model for the topographic control on shallow landsliding." Water Resources Research, Vol. 30, No. 4, pp. 1153-1171. https://doi.org/10.1029/93WR02979
  19. O'Callaghan, J.F., and Mark, D.M. (1984). "The extraction of drainage networks from digital elevation data." Computer vision, Graphics and Image Processing, Vol. 28, No. 3, pp. 324-344.
  20. Pack, R.T., Tarboton, D.G., and Goodwin, C.N. (1998). The SINMAP Approach to Terrain Stability Mapping. Proceedings-International Congress of the International Association for Engineering Geology and the Environment, Balkema, Rotterdam, Netherlands, pp. 1157-1165.
  21. Quinn, P., Beven, K., Chevallier, P., and Plancheon, O. (1991). "The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models." Hydrological Process, Vol. 5, No. 1, pp. 59-79. https://doi.org/10.1002/hyp.3360050106
  22. Ray, R.L., and De Smedt, F. (2009). "Slope stability analysis using GIS on a regional scale: a case study from Dhalding, Nepal." Environmental Geology, Vol. 57, No. 7, pp. 1603-1611. https://doi.org/10.1007/s00254-008-1435-5
  23. Simoni, S., Zanotti, F., Bertoldi, G., and Rigon, R. (2008). "Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS." Hydrological Process, Vol. 22, pp. 532-545. https://doi.org/10.1002/hyp.6886
  24. Tarboton, D.G. (1997). "A new method for the determination of flow directions and upslope areas in grid digital elevation models." Water Resources Research, Vol. 33, No. 2, pp. 309-319. https://doi.org/10.1029/96WR03137
  25. Wagner, A., Leite, E., and Olivier, R. (1988). "Rock and debris-slides risk mapping in Nepal: using GIS." Proceedings of 5th Internatioal Symposium on Landslides, Lausanne, Switzerland 2, Rotterdam: Balkema, pp. 1251-1258.
  26. Wang, H., Liu, G., Xu, W., and Wang, G. (2005). "GIS-based landslide hazard assessment: an overview." Progress in Physical Geography, Vol. 29, No. 4, pp. 548-567. https://doi.org/10.1191/0309133305pp462ra

Cited by

  1. Large-Scale Slope Stability Analysis Using Climate Change Scenario (2): Analysis of Application Results vol.17, pp.3, 2014, https://doi.org/10.11108/kagis.2014.17.3.001
  2. Development and Application of Automatic Rainfall Field Tracking Methods for Depth-Area-Duration Analysis vol.47, pp.4, 2014, https://doi.org/10.3741/JKWRA.2014.47.4.357
  3. Effect of Digital Elevation Model Resolution on Shallow Landslide Modeling Using TRIGRS vol.18, pp.2, 2017, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000233
  4. Survey of spatial and temporal landslide prediction methods and techniques vol.43, pp.4, 2016, https://doi.org/10.7744/kjoas.20160053
  5. Application of Geomorphologic Factors for Identifying Soil Loss in Vulnerable Regions of the Cameron Highlands vol.10, pp.4, 2018, https://doi.org/10.3390/w10040396