DOI QR코드

DOI QR Code

Improvement of Wettability and Removal of Skin Layer on Ar-Plasma-Treated Polypropylene Blend Surface

폴리프로필렌 복합소재의 아르곤 플라즈마 처리로 표면층 제거와 젖음성 향상

  • Weon, Jong-Il (Department of Safety Engineering, Dongguk University) ;
  • Lee, Sun-Yong (Department of Safety Engineering, Dongguk University)
  • Received : 2011.12.28
  • Accepted : 2012.02.28
  • Published : 2012.07.25

Abstract

The surface modification and characterization of Ar-plasma treated polypropylene (PP) blend are investigated using x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and contact angle measurement. An increase in Ar-plasma treatment time leads to an increase in wettability, oxygen containing polar functional groups, the amount of talc, and surface roughness on the PP blend surface. A careful observation using SEM indicates that there exists a skin layer consisting of only PP component. The difference in viscosity between PP and rubber particles facilities the formation of skin layer. However, it is found that an increase in Ar-plasma treatment time helps to decrease the thickness of skin layer. Additional methodologies for the elimination of skin layer during injection molding are also discussed. The surface modification and morphological alteration induced by Ar-plasma treatment provides a hydrophilic state, followed by the improvement in wettability, on the PP blend surface.

아르곤(Ar) 플라즈마 처리된 폴리프로필렌 복합소재의 표면 개질 및 특성 변화를 X-선 광전자 분광 분석(XPS), 적외선 분광 분석(FTIR), 주사 전자 현미경 분석(SEM) 및 접촉각 측정 등을 이용하여 조사하였다. Ar 플라즈마 처리 시간의 증가는 폴리프로필렌 복합소재 표면의 젖음성, 극성 관능기를 갖는 산소 성분, 탈크 함량 및 표면조도의 증가를 초래하였다. 주사 전자 현미경 분석을 통한 자세한 관찰은 폴리프로필렌 성분으로 구성된 표면층(skin layer)이 존재함을 확인하였다. 폴리프로필렌과 고무 입자간의 점도차는 표면층의 생성을 촉진시켰다. 하지만 Ar 플라즈마 처리시간의 증가는 표면층의 두께를 감소시키는 것을 확인하였다. 사출성형 공정 동안, 표면층을 제거할 수 있는 추가적인 방법론에 대해서도 토의하였다. Ar 플라즈마 처리에 의한 표면 개질 및 모폴로지의 변화는 폴리프로필렌 복합소재 표면 상에 친수화 상태를 부여하고, 이에 따라 젖음성 향상을 유도하였다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. C. J. Lee, S. K. Lee, D. C. Ko, D. J. Kim, and B. M. Kim, J. Mat. Proc. Tech., 209, 4769 (2009). https://doi.org/10.1016/j.jmatprotec.2008.11.043
  2. W. Cho and S. C. Yang, J. Korean Inst. Electr. Electron. Mater. Eng., 21, 5, 486 (2008). https://doi.org/10.4313/JKEM.2008.21.5.486
  3. V. Svorcik, N. Kasalkova, P. Slepicka, K. Zaruba, V. Kral, L. Bacakova, M. Parizek, V. Lisa, T. Ruml, H. Gbelcova, S. Rimpelova, and A. Mackova, Nucl. Instrum. Methods Phys. Res. Section B, 267, 1904 (2009). https://doi.org/10.1016/j.nimb.2009.03.099
  4. V. Svorcik, K. Kolarova, P. Slepicka, A. Mackova, M. Novotna, and V. Hnatowicz, Polym. Degrad. Stab., 91, 1219 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.09.007
  5. V. Svoreik, V. Kotal, J. Siegel, P. Sajdi, A. Mackova, and V. Hnatowicz, Polym. Degrad. Stab., 92, 1645 (2007). https://doi.org/10.1016/j.polymdegradstab.2007.06.013
  6. V. Kotal, V. Svorcik, P. Slepicka, O. Blahova, P. Stta, and V. Hnatowicz, Plasma Proc. Polym., 4, 69 (2007). https://doi.org/10.1002/ppap.200600069
  7. J. N. Lai, B. Sunderland, J. M. Xue, S. Yan, W. Zhao, M. Folkard, B. D. Michael, and Y. Wang, Appl. Surf. Sci., 252, 3375 (2006). https://doi.org/10.1016/j.apsusc.2005.05.038
  8. J. I. Weon and K. Y. Choi, Macromol. Res., 17, 11, 886 (2009). https://doi.org/10.1007/BF03218631
  9. L. Carrino, W. Polini, and L. Sorrentino, J. Mater. Process. Technol., 153-154, 519 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.134
  10. O. J. Kwon, S. Tang, S. W. Myung, N. Lu, and H. S. Choi, Surf. Coat. Technol., 192, 1 (2005). https://doi.org/10.1016/j.surfcoat.2004.09.018
  11. Y. S. Seo, Polym. Sci. Tech., 13, 759 (2002).
  12. B. T. Kim, Polym. Sci. Tech., 14, 680 (2003).
  13. S. C. Cho, Y. C. Hong, S. G. Cho, Y. Y. Ji, C. S. Han, and H. S. Uhm, Curr. Appl. Phys., 9, 1223 (2009). https://doi.org/10.1016/j.cap.2009.01.020
  14. L. Jing, B. Xin, F. Yuan, L. Xue, B. Wang, and H. Fu, J. Phys. Chem. B, 110, 17860 (2006). https://doi.org/10.1021/jp063148z
  15. C. C. Chusuei, D. W. Goodman, M. J. Van Stipdonk, D. R. Justes, K. H. Loh, and E. A. Schweikert, Langmuir, 15, 7355 (1999). https://doi.org/10.1021/la9905160
  16. L.-Q. Wang, D. R. Baer, M. H. Engelhard, and A. N. Shultz, Surf. Sci., 344, 237 (1995). https://doi.org/10.1016/0039-6028(95)00859-4
  17. X. T. Gao and I. E. Wachs, Catal. Today, 51, 233 (1999). https://doi.org/10.1016/S0920-5861(99)00048-6
  18. J. Jun, J.-H. Shin, and M. Dhayal, Appl. Surf. Sci., 252, 3871 (2006). https://doi.org/10.1016/j.apsusc.2005.06.004
  19. Y. A. Cao, W. S. Yang, Y. M. Chen, H. Du, and P. Yue, Appl. Surf. Sci., 236, 223 (2004). https://doi.org/10.1016/j.apsusc.2004.04.020
  20. P. K. Chu, J. Y. Chen, L. P. Wang, and N. Huang, Mater. Sci. Eng. R, 36, 143 (2002). https://doi.org/10.1016/S0927-796X(02)00004-9
  21. V. Svorcik and V. Hnatowicz, in Polymer Degradation and Stability, L. B. Albertov, Editor, Nova Sci. Publisher, New York, p 171 (2008).
  22. R. Schneider, J. Woltersdorf, and A. Roder, Fresenius J. Anal. Chem., 353, 263 (1995). https://doi.org/10.1007/BF00322049
  23. K. Y. Eom, J. Y. Park, and O. J. Kwon, Polymer(Korea), 21, 426 (1997).
  24. A. Brent Strong, Plastics Materials and Processing, 3th Edn., Prentice Hall, Upper Saddle River, New Jersey, Columbus, Ohio, p 390 (2006).
  25. H. C. Kim, J. Korean Fiber Soc., 31, 9 (1994).

Cited by

  1. Cellular Behavior of Human Adipose-Derived Stem Cells on Wettable Gradient Polyethylene Surfaces vol.15, pp.2, 2014, https://doi.org/10.3390/ijms15022075